Body

Promising compound could offer new treatment for heart failure

Heart failure occurs when the heart cannot pump enough blood to meet the body's needs. It's a very common condition, affecting about six million people in the United States, but current therapies are not adequately effective at improving health and preventing deaths. A study published by Cell Press August 1st in the journal Cell reveals the key role of a family of molecules known as bromodomain and extraterminal domain (BET) proteins in activating genes that contribute to heart failure.

Prolactin reduces arthritis inflammation

Inflammatory joint diseases such as rheumatoid arthritis are the result of cartilage damage and loss. Chondrocytes are the only cells that are found in cartilage and their death is linked to decreased cartilage health. In the Journal of Clinical Investigation, Carmen Clapp and colleagues at the National University of Mexico identify prolactin as a potential treatment for inflammatory joint disease.

Prolactin treatment prevented chondrocyte death and associated cartilage degradation.

Prolactin reduces arthritis inflammation

Inflammatory joint diseases such as rheumatoid arthritis are the result of cartilage damage and loss. Chondrocytes are the only cells that are found in cartilage and their death is linked to decreased cartilage health. In this issue of the Journal of Clinical Investigation, Carmen Clapp and colleagues at the National University of Mexico identify prolactin as a potential treatment for inflammatory joint disease. Prolactin treatment prevented chondrocyte death and associated cartilage degradation.

Identification of a molecule linking bone loss and bone formation

Bone integrity requires skeletal remodeling, which involves both bone formation and resorption. It has been previously shown that the formation of new bone is triggered by degradation of older bone. However, it is unknown how these two processes coordinate for skeletal maintenance. In this issue of the Journal of Clinical Investigation, Sunao Takeshita and colleagues at the National Center for Geriatrics and Gerontology identify a protein, CTHRC1 that is secreted by bone adsorbing cells (osteoclasts) and helps initiate bone formation.

Defense against bacterial infection in chronic granulomatous disease

Patients suffering from chronic granulomatous disease (CGD) are prone to recurrent and potentially life threatening bouts of infection due to the inability of phagocytic cells to kill invading microorganisms. Normal phagocytes release reactive oxygen compounds in response to infection, but this defense is lacking in phagocytes of people with CGD. In the current issue of the Journal of Clinical Investigation, Griffin Rodgers and colleagues at the National Institutes of Health identify a neutrophil granule protein, OLFM4 as a potential therapeutic target for CGD patients.

We each live in our own little world -- smellwise

There are some smells we all find revolting. But toward a handful of odors, different people display different sensitivities—some can smell them, while some can't, or some find them appealing, while others don't. A pair of studies appearing online on August 1 in the journal Current Biology, a Cell Press publication, now identifies the genetic differences that underpin the differences in smell sensitivity and perception in different individuals. The researchers tested nearly 200 people for their sensitivity for ten different chemical compounds that are commonly found in foods.

Boning up: McMaster researchers find home of best stem cells for bone marrow transplants

Hamilton, ON (August 1, 2013) –McMaster University researchers have revealed the location of human blood stem cells that may improve bone marrow transplants. The best stem cells are at the ends of the bone.

It is hoped this discovery will lead to lowering the amount of bone marrow needed for a donation while increasing regeneration and lessening rejection in the recipient patients, says principal investigator Mick Bhatia, professor and scientific director of the McMaster Stem Cell and Cancer Research Institute.

Bacteria hold the clues to trade-offs in financial investments and evolution

Scientists have found that bacteria have the potential to teach valuable investment lessons. The research, published in the journal Ecology Letters, takes advantage of the fact that bacteria, like humans, have limited resources and are constantly faced with investment decisions. Bacteria though are successful with their investments and have colonised every inch of the surface of our planet.

UC San Diego researchers develop efficient model for generating human iPSCs

Researchers at the University of California, San Diego School of Medicine report a simple, easily reproducible RNA-based method of generating human induced pluripotent stem cells (iPSCs) in the August 1 edition of Cell Stem Cell. Their approach has broad applicability for the successful production of iPSCs for use in human stem cell studies and eventual cell therapies.

New designer compound treats heart failure by targeting cell nucleus

Researchers from Case Western Reserve University School of Medicine and the Dana-Farber Cancer Institute have made a fundamental discovery relevant to the understanding and treatment of heart failure – a leading cause of death worldwide. The team discovered a new molecular pathway responsible for causing heart failure and showed that a first-in-class prototype drug, JQ1, blocks this pathway to protect the heart from damage.

New target for the fight against cancer as a result of excessive blood vessel formation

New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor. To date, the success of these treatments is limited by resistance, poor efficiency and harmful side effects. In the leading scientific journal Cell, Peter Carmeliet (VIB-KU Leuven) and his team reported that sugar metabolism (a process that we call glycolysis) also plays an essential role in the formation of new blood vessels.

Sanford-Burnham researchers map a new metabolic pathway involved in cell growth

LA JOLLA, Calif., August 1, 2013 — Deciphering the body's complex molecular pathways that lead to disease when they malfunction is highly challenging. Researchers at Sanford-Burnham Medical Research Institute now have a more complete picture of one particular pathway that can lead to cancer and diabetes. In the study published by Molecular Cell, the scientists uncovered how a protein called p62 has a cascade affect in regulating cell growth in response to the presence of nutrients such as amino acids and glucose. Disrupting this chain may offer a new approach to treating disease.

Blocking sugar intake may reduce cancer risk or progression in obese and diabetic people

Blocking dietary sugar and its activity in tumor cells may reduce cancer risk and progression, according to researchers from the Icahn School of Medicine. The study, conducted in fruit flies and published in the journal Cell, provides insight as to why metabolism-related diseases such as diabetes or obesity are associated with certain types of cancer, including pancreatic, breast, liver, and colon cancers.

Targeted therapy identified for protein that protects and nourishes cancer

HOUSTON –Scientists at The University of Texas MD Anderson who identified a protein's dual role in cancer promotion have discovered a way to shut it down, opening a potential new avenue for cancer treatment.

Reporting this week in the journal Cell, the researchers describe the first compound that directly binds to and blocks Skp2, a protein they previously showed both turns off a cellular defense against cancer and switches on a cancer-feeding metabolic pathway.

When prescribing antibiotics, doctors most often choose strongest types of drugs

(SALT LAKE CITY)—When U.S. physicians prescribe antibiotics, more than 60 percent of the time they choose some of the strongest types of antibiotics, referred to as "broad spectrum," which are capable of killing multiple kinds of bacteria, University of Utah researchers show in a new study.