Body

Hollow-fiber membranes could cut separation costs, energy use

Researchers have developed a microfluidic technique for fabricating a new class of metal-organic framework (MOF) membranes inside hollow polymer fibers that are just a few hundred microns in diameter. The new fabrication process, believed to be the first to grow MOF membranes inside hollow fibers, could potentially change the way large-scale energy-intensive chemical separations are done.

Doing something is better than doing nothing for most people, study shows

Most people are just not comfortable in their own heads, according to a new psychological investigation led by the University of Virginia.

The investigation found that most would rather be doing something – possibly even hurting themselves – than doing nothing or sitting alone with their thoughts, said the researchers, whose findings will be published July 4 in the journal Science.

Smithsonian scientist and collaborators revise timeline of human origins

Many traits unique to humans were long thought to have originated in the genus Homo between 2.4 and 1.8 million years ago in Africa. Although scientists have recognized these characteristics for decades, they are reconsidering the true evolutionary factors that drove them.

Gene discovered that activates stem cells for organ regeneration in Planarians

Researchers announced the discovery of a gene zic-1 that enables stem cells to regrow a head after decapitation in flatworm planarians. Professor Christian Petersen and Ph.D. student Constanza Vásquez-Doorman of Northwestern University discovered zic-1 by investigating planarians, an animal that uses pluripotent stem cells to regrow any missing tissue lost from injury. The study, entitled "zic-1 Expression in Planarian Neoblasts after Injury Controls Anterior Pole Regeneration," was reported in PLOS Genetics.

Rethinking the reef

A new study by biologists at San Diego State University and Scripps Institution of Oceanography shows that inhabited coral islands that engage in commercial fishing dramatically alter their nearby reef ecosystems, disturbing the microbes, corals, algae and fish that call the reef home.

The study's lead author, Linda Wegley Kelly, is a postdoctoral scholar in the lab of SDSU virologist Forest Rohwer.

Drug shows promise for effectively treating metabolic syndrome

(SALT LAKE CITY)—University of Utah researchers have discovered that an enzyme involved in intracellular signaling plays a crucial role in developing metabolic syndrome, a finding that has a U of U spinoff company developing a drug to potentially treat the condition.

The researchers, led by Jared Rutter, Ph.D., professor of biochemistry, hope to begin human clinical trials of a drug in the next couple of years.

Safer, cheaper building blocks for future anti-HIV and cancer drugs

A team of researchers from KU Leuven, in Belgium, has developed an economical, reliable and heavy metal-free chemical reaction that yields fully functional 1,2,3-triazoles. Triazoles are chemical compounds that can be used as building blocks for more complex chemical compounds, including pharmaceutical drugs.

Cellular defence against fatal associations between proteins and DNA

This news release is available in German.

Explaining 'healthy' obesity

Up to one-quarter of individuals currently labeled as obese are actually metabolically healthy and do not have a high risk of developing type 2 diabetes. Though obesity is a major risk factor for diabetes, the two conditions aren't always linked. A study published by Cell Press July 3rd in the journal Cell sheds light on a possible explanation, revealing that high levels of a molecule called heme oxygenase-1 (HO-1) are linked to poor metabolic health and an increased risk of type 2 diabetes in obese humans.

Flower's bellows organ blasts pollen at bird pollinators

Axinaea flowers appear in clusters of a few to more than 20 flowers, with pink, red, yellow, or orange petals that usually don't open completely. The stamens of those flowers stand out based on their contrasting colors and conspicuous, bulbous appendages. Something else about the stamens also piqued the researchers' curiosity: one or more of these stamens was almost always found missing in the flowers the researchers observed in the field or on herbarium specimens.

New clue helps explain how brown fat burns energy

BOSTON – The body contains two types of fat cells, easily distinguished by color: White and brown. While white fat serves to store excess calories until they're needed by the body, brown adipocytes actually burn fat by turning it into heat. Ever since it was discovered that adult humans harbor appreciable amounts of brown fat, investigators have been working to better understand its thermogenic fat-burning properties with the ultimate goal of developing novel therapies to combat obesity and diabetes.

New study reveals how tumors remodel their surroundings to grow

La Jolla, Calif., July 3, 2014 - A team of scientists from Sanford Burnham Medical Research Institute (Sanford-Burnham) has found that the loss of a protein called p62 in the cells and tissue surrounding a tumor can enhance the growth and progression of tumors. The study suggests that therapies targeting the tumor microenvirnoment may be as important as targeting the tumor itself.

WSU researchers rule out leading hypothesis for miscarriages, birth defects

PULLMAN, Wash.—Washington State University reproductive biologists have ruled out one of the leading thoughts on why older women have an increased risk of miscarriages and children with birth defects.

The 46-year-old "Production-Line Hypothesis" says that the first eggs produced in a female's fetal stage tend to have better connections or "crossovers" between chromosomes. The hypothesis also asserts that, as the woman ages and ovulates eggs produced later, her eggs will have more faulty chromosomes, leading to miscarriages and developmental abnormalities.

Researchers learn how beryllium causes deadly lung disease

Using exquisitely detailed maps of molecular shapes and the electrical charges surrounding them, researchers at National Jewish Health have discovered how the metal beryllium triggers a deadly immune response in the lungs. In the July 3, 2014, issue of the journal Cell John Kappler, PhD, and his colleagues show how a genetic susceptibility to the disease creates a molecular pocket in an immune system protein, which captures beryllium ions and triggers an inflammatory response in the lungs.

Researchers find genetic link to autism known as CHD8 mutation

In a collaboration involving 13 institutions around the world, researchers have broken new ground in understanding what causes autism. The results are being published in Cell magazine July 3, 2014: "Disruptive CHD8 Mutations Define a Subtype of Autism in Early Development."

"We finally got a clear cut case of an autism specific gene," said Raphael Bernier, the lead author, and UW associate professor in the Department of Psychiatry and Behavioral Sciences and the clinical director of the Autism Center at Seattle Children's.