Nanoscale materials grow with the flow

Tringides' work succeeds in terms of uniformity and speed. The lead islands self-organize on silicon in only two to three minutes. Also, better understanding of how the lead islands grow will help researchers see if other systems show the same liquid-like behavior at low temperatures.

With such promising findings in hand, Tringides' team, which includes associate scientist Myron Hupalo and graduate students Steven Binz and Jizhou Chen, further investigated the possible use of these unusual lead islands on silicon as templates to study typical atomic processes, such as adsorption, nucleation and atom bonding. These processes are important in the study of reactivity and catalysis.

During those experiments, Tringides' group made another unexpected discovery. Normally atomic processes depend on an element's chemical nature, but the group found that when it came to lead islands, quantum mechanics had another surprise in store: The atomic processes depend dramatically on whether the island height is odd or even rather than its chemical nature. Tringides' group made this intriguing observation in a large lead island that had formed over a step on the original silicon surface. The top of the large island was flat as expected.

"But, the part of the island sitting on the higher terrace of silicon was four layers high, and the other part of the island sitting on the lower terrace was five layers," said Tringides.

The group studied nucleation on this unusual island by adding a very small amount of lead to its surface, creating many new small islands on top of the large island. Examination revealed that the density of the new islands was 60 times higher on the four-layer part of the island than on the five-layer part even though the two parts of the island were connected, suggesting that atom bonding is easier on the four-layer islands.

"The island was made up of the same element, lead, throughout," said Tringides. "So, we would expect the two parts of the island to communicate with each other, and atoms should be able to easily move from left to right and right to left among both halves of the island, so the density of the new small islands should have been the same in both parts."

Instead, the two halves of the island behaved like two separate islands. The four-layer section of the island has similar characteristics to independent four-layer islands, and the five-layer section behaved like other five-layer islands.

"For the purpose of growing materials, the two-part island indicates that we may not have to change the element to create variation in material properties," said Tringides. "Instead, we may be able to just change the height of the island."

"This is promising because it's easier to change the geometry of an island than to go out and find a new, exotic material," he added.

Tringides plans further experiments using gas adsorption to test the relationship between material reactivity and island height.

Source: DOE/Ames Laboratory

This video shows the remarkable diffusion of lead atoms on a lead-on-silicon island. Here, the black region is an area empty of lead, and the region outside is a moving lead layer. (The grey area is because the new lead atoms that enter the empty area are not yet in their perfect sites.) Real-time for the video is 50 seconds and the temperature is negative 163 degrees Fahrenheit. The video was created at Hong Kong University of Science and Technology using low-energy electron microscopy in collaboration with Ames Laboratory scientists.

(Photo Credit: US Department of Energy's Ames Laboratory)