Earth

Gordon, the unique supercomputer launched last year by the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, recently completed its most data-intensive task so far: rapidly processing raw data from almost one billion particle collisions as part of a project to help define the future research agenda for the Large Hadron Collider (LHC).

LA JOLLA, CA – April 4, 2013 – Scientists at The Scripps Research Institute (TSRI) have illuminated the mechanism at the heart of one of the most useful processes in modern chemistry. A reaction that is robust and easy to perform, it is widely employed to synthesize new pharmaceuticals, biological probes, new materials and other products. But precisely how it works had been unclear since its invention at TSRI more than a decade ago.

A custom-built programmable 3D printer can create materials with several of the properties of living tissues, Oxford University scientists have demonstrated.

The new type of material consists of thousands of connected water droplets, encapsulated within lipid films, which can perform some of the functions of the cells inside our bodies.

Obesity is linked to the widespread epidemics of diabetes and heart disease that plague society, but a lesser-known fact is that the weight can also lead to autoimmune disease. Now, researchers have new information about how that damaging immune response happens and how it might be stopped, published on April 4 in Cell Reports, a Cell Press publication.

The key, they show, may be to block an important element known as AIM (for apoptosis inhibitor of macrophage) in the bloodstream and, ultimately, the production of antibodies that attack the self.

In a geological moment about 66 million years ago, something killed off almost all the dinosaurs and some 70 percent of all other species living on Earth. Only those dinosaurs related to birds appear to have survived. Most scientists agree that the culprit in this extinction was extraterrestrial, and the prevailing opinion has been that the party crasher was an asteroid.

Owing to the huge array of applications, catalysis has long been dubbed as one of the most significant areas of process and synthetic chemistry. In fact, the vast majority of all chemical industrial products – be it in the field of pharmaceutical, agricultural or polymer chemistry – involve catalysts at some stage of the manufacturing process.

Talk about storing data in the cloud.

Scientists at the Joint Quantum Institute (JQI) of the National Institute of Standards and Technology (NIST) and the University of Maryland have taken this to a whole new level by demonstrating* that they can store visual images within quite an ethereal memory device—a thin vapor of rubidium atoms. The effort may prove helpful in creating memory for quantum computers.

The challenge of making concrete greener—reducing its sizable carbon footprint without compromising performance—is just like the world's most ubiquitous manufactured material—hard!

But, according to a new report* from the National Institute of Standards and Technology (NIST), the potential engineering performance, energy-efficiency and environmental benefits make it a challenge worth tackling.

WASHINGTON--The first published results from the Alpha Magnetic Spectrometer (AMS), a major physics experiment operating on the International Space Station, were announced today by the AMS collaboration spokesman, Nobel Laureate Samuel Ting. The result is the most precise measurement to date of the ratio of positrons to electrons in cosmic rays. Measurements of this key ratio may eventually provide the world with our first glimpse into dark matter.

Bottom-up synthesis of nanowires through metal-catalyzed vapor phase epitaxy is a very attractive process to generate high-quality nanowires thus providing an additional degree of freedom in design of innovative devices that extend beyond what is achievable with the current technologies. In this nano-fabrication process, nanowires grow through the condensation of atoms released from a molecular vapor (called precursors) at the surface of metallic nano-droplets. Gold is broadly used to form these nano-droplets.

University of Notre Dame researchers have successfully created three-dimensional anatomical models from CT scans using 3-D printing technology, a process that holds promise for medical professionals and their patients. A paper by the researchers, "3D Printing of Preclinical X-ray Computed Tomographic Data Sets," was published in the Journal of Visualized Experiments this week.

A team of researchers at the San Diego Supercomputer Center (SDSC) and the Department of Electronic and Computer Engineering at the University of California, San Diego, has developed a highly scalable computer code that promises to dramatically cut both research times and energy costs in simulating seismic hazards throughout California and elsewhere.

More useful projections of sea level are possible despite substantial uncertainty about the future behavior of massive ice sheets, according to Princeton University researchers.

Jumping silicon atoms are the stars of an atomic scale ballet featured in a new Nature Communications study from the Department of Energy's Oak Ridge National Laboratory.

The ORNL research team documented the atoms' unique behavior by first trapping groups of silicon atoms, known as clusters, in a single-atom-thick sheet of carbon called graphene. The silicon clusters, composed of six atoms, were pinned in place by pores in the graphene sheet, allowing the team to directly image the material with a scanning transmission electron microscope.

The mountain ranges of the North American Cordillera are made up of dozens of distinct crustal blocks. A new study clarifies their mode of origin and identifies a previously unknown oceanic plate that contributed to their assembly.