Earth

Mineral dust ingested with food causes distinct signs of wear on the teeth of plant-eating vertebrates, which can differ considerably depending on the type of dust. This is what paleontologists at Johannes Gutenberg University Mainz (JGU) have discovered in a controlled feeding study of guinea pigs. As they report in the current issue of Proceedings of the National Academy of Sciences of the United States of America (PNAS), their findings could lead to a more accurate reconstruction of the eating habits of extinct animals as well as a reconstruction of their habitats.

Much of our knowledge of how biodiversity benefits ecosystems comes from experimental sites. These sites contain combinations of species that are not found in the real world, which has led some ecologists to question the findings from biodiversity experiments. But the positive effects of biodiversity for the functioning of ecosystems are more than an artefact of experimental design.

Dementia may be an underlying cause of nearly three times more deaths in the U.S. than official records show, according to a new Boston University School of Public Health (BUSPH) study.

MIT researchers have developed a simple, low-cost technology to administer powerful drug formulations that are too viscous to be injected using conventional medical syringes.

The technology, which is described in a paper published today in the journal Advanced Healthcare Materials, makes it possible to inject high-concentration drugs and other therapies subcutaneously. It was developed as a solution for highly effective, and extremely concentrated, biopharmaceuticals, or biologics, which typically are diluted and injected intravenously.

Locomotion deficits, such as lack of coordination, a shuffling gait, or loss of balance, can result from neurological conditions, specifically those that affect motor areas of the nervous system. To develop treatments, scientists often turn to animal models of disease. This strategy is crucial not only for designing potential therapies, but also for gaining insight into fundamental questions about the organisation and function of the nervous system.

August 24, 2020, Addis Ababa, Ethiopia: Residing at higher altitude is associated with greater rates of stunting, even for children living in "ideal-home environments" according to a new study from researchers at the International Food Policy Research Institute (IFPRI) and Addis Ababa University. The study provides new insight in the relationship between altitude and undernutrition and the additional efforts needed to ensure policy interventions are appropriately tailored to high altitude contexts.

A new study in the field of biophysics has revealed how large molecules are able to enter the nucleus of a cell. A team led by Professor Edward Lemke of Johannes Gutenberg University Mainz (JGU) has thus provided important insights into how some viruses, for example, can penetrate into the nucleus of a cell, where they can continue to proliferate and infect others. They have also demonstrated that the efficiency of transport into a cell decreases as the size of the molecules increases and how corresponding signals on the surface can compensate for this.

URBANA, Ill. - Chances are you've heard of or even taken probiotics: supplements delivering "good microbes" to the gut, providing a wide range of health benefits. If you're really up on your gut health, you may also be aware of prebiotics: supplements designed to fuel the good microbes already living in our guts.

A team of researchers from University of Toronto Engineering and the University of Michigan has redesigned and enhanced a natural enzyme that shows promise in promoting the regrowth of nerve tissue following injury.

Their new version is more stable than the protein that occurs in nature, and could lead to new treatments for reversing nerve damage caused by traumatic injury or stroke.

COLUMBUS, Ohio - Splitting one type of cancer drug in half and delivering the pieces separately to cancer cells could reduce life-threatening side effects and protect healthy, non-cancerous cells, a new study suggests.

The study, published today in the Proceedings of the National Academy of Sciences, suggests that splitting immunotoxins into two inactive and benign parts may set the stage for future, targeted treatments of cancers.

Macrophages are white blood cells that, depending on the signals they get from the immune system, become specialized in either increasing or decreasing inflammation. When macrophages are programmed to be pro-inflammatory, they help to increase inflammation, which is beneficial for fighting infections; when they are programmed to be anti-inflammatory, they help to decrease inflammation.

Degradation of platinum, used as a key electrode material in the hydrogen economy, severely shortens the lifetime of electrochemical energy conversion devices, such as fuel cells. For the first time, scientists elucidated the movements of the platinum atoms that lead to catalyst surface degradation. Their results are published today in Nature Catalysis.

Palaeontologists from the Natural History Museums in Luxembourg and Maastricht have discovered a previously unknown species of brittle star that lived in the shallow, warm sea which covered parts of the present-day Netherlands at the end of the Dinosaur Era. The starfish-like creature was unearthed more than 20 years ago but has only now been identified as new to science. The name of the new fossil pays tribute to Dutch metal vocalist Floor Jansen, in recognition of the mutual inspiration between science and music.

Ice is melting at a surprisingly fast rate underneath Shirase Glacier Tongue in East Antarctica due to the continuing influx of warm seawater into the Lützow-Holm Bay.

Hokkaido University scientists have identified an atypical hotspot of sub-glacier melting in East Antarctica. Their findings, published in the journal Nature Communications, could further understandings and predictions of sea level rise caused by mass loss of ice sheets from the southernmost continent.

It is not every day that scientists are able to produce an entirely new kind of light, but when they do the implications can be dramatic. When twisted light beams carrying orbital angular momentum were uncovered in 1992, researchers realized the potential to increase data transmission speeds over current approaches. Separately, in 2005, the Nobel prize in physics was awarded for the invention of the optical frequency comb - a device that creates a spectrum of equally spaced frequencies of non-twisted light. Such combs have become fundamental tools for metrology and atomic clocks.