Earth

Researchers at the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) have come a step closer to making a viable, high-output battery based on magnesium (Mg), an element the United States Geological Survey reports is far more abundant than lithium.

The researchers published their findings in Angewandte Chemie, a peer-reviewed journal of the German Chemical Society on April 11, 2020.

DNA scientists investigating new marine life migration patterns in the Atlantic Ocean surfaced the genetic traces of species far from their usual southern homes.

A species of ray -- the Brazilian cownose ray, Rhinoptera brasiliensis, and the Gulf kingfish, Menticirrhus littoralis, have been turning up when the weather turns warm in New Jersey's Barnegat Inlet, about a two hour drive south of New York City.

A new machine learning tool can calculate the energy required to make -- or break -- a molecule with higher accuracy than conventional methods. While the tool can currently only handle simple molecules, it paves the way for future insights in quantum chemistry.

A Stanford research team has developed a way to boost the effectiveness of the insulin injections people with diabetes routinely take to control their blood sugar.

Led by materials scientist Eric Appel, the advance might enable patients with diabetes to take a double-acting shot that contains insulin in combination with a drug based on a second hormone, known as amylin. Amylin plays a synergistic role with insulin to control blood sugar levels after eating in a way that is more effective than insulin alone and mimics what occurs naturally with a meal.

When it comes to forming a lasting bond, our longing for a partner may be as important as--if not more important than--how we react when we're with them, suggests a surprising new brain imaging study published in the Proceedings of the National Academy of Sciences this week.

An interdisciplinary team of researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA has developed a first-of-its-kind roadmap of how human skeletal muscle develops, including the formation of muscle stem cells.

Motion picture animation and video games are impressively lifelike nowadays, capturing a wisp of hair falling across a heroine's eyes or a canvas sail snapping crisply in the wind. Collaborators from the University of California, Los Angeles (UCLA) and Carnegie Mellon University have adapted this sophisticated computer graphics technology to simulate the movements of soft, limbed robots for the first time.

The findings were published May 6 in Nature Communications in a paper titled, "Dynamic Simulation of Articulated Soft Robots."

What The Study Did: In this randomized clinical trial, researchers assessed the effect on measures of quality of life among women who watched Disney movies during chemotherapy for gynecologic cancer.

Authors: Johannes Ott, M.D., of the Medical University of Vienna in Austria, is the corresponding author.

To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/

(doi:10.1001/jamanetworkopen.2020.4568)

Blade-like tools and animal tooth pendants previously discovered in Europe, and once thought to possibly be the work of Neanderthals, are in fact the creation of Homo sapiens, or modern humans, who emigrated from Africa, finds a new analysis by an international team of researchers.

Its conclusions, reported in the journal Nature, add new clarity to the arrival of Homo sapiens into Europe and to their interactions with the continent's indigenous and declining Neanderthal population.

HAMILTON, ON, May 11, 2020 - A group of 59 international scientists, led by researchers at Canada's McMaster University, has uncovered new information about the distinct effects of climate change on boreal forests and peatlands, which threaten to worsen wildfires and accelerate global warming.

Scientists have developed a test that can identify hybrids resulting from crossbreeding between European and American lobsters.

American lobsters have occasionally escaped or been released into European waters after being imported for the seafood market.

Experts have long feared they could threaten European lobsters by introducing disease or establishing as an invasive species.

Graphene is a diamagnetic material, this is, unable of becoming magnetic. However, a triangular piece of graphene is predicted to be magnetic. This apparent contradiction is a consequence of "magic" shapes in the structure of graphene flakes, which force electrons to "spin" easier in one direction. Triangulene is a triangular graphene flake, which possesses a net magnetic moment: it is a graphene nanometer-size magnet. This magnetic state opens fascinating perspectives on the use of these pure-carbon magnets in technology.

Plants and vegetation play a critical role in supporting life on Earth, but there is still a lot of uncertainty in our understanding of how exactly they affect the global carbon cycle and ecosystem services. A new IIASA-led study explored the most important organizing principles that control vegetation behavior and how they can be used to improve vegetation models.

In a world in which we are confronted with constantly rising average temperatures due to global warming, we must ask ourselves: How do organisms react to changing temperatures? What molecular mechanisms do they use?

For hundreds of millions of years plants have had the ability to harness carbon dioxide from the air using solar energy. The Max Planck research network MaxSynBio is on the trail of building artificial cells as sustainable green bioreactors. A Max Planck research team led by Tobias Erb from the Institute for Terrestrial Microbiology in Marburg has now succeeded in developing a platform for the automated construction of cell-sized photosynthesis modules. The artificial chloroplasts are capable of binding and converting the greenhouse gas carbon dioxide using light energy.