Culture

Novel biomarker technology for cancer diagnostics

A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden. The new technology allows very sensitive, quick and cost-effective identification of cancer biomarkers. The research is published in Nature Communication Biology.

Today, every third person will get cancer in their lifetime, and the current trend suggests that in a few years that number will be one in two. If diagnosed earlier than today, a majority of cancer cases would have a much more favorable outcome for patients. WHO has projected that a third of all cancers could be cured if diagnosed already at tumor stage I/II, that is, asymptomatic patients.

CREATE Health Cancer Center at Lund university has in collaboration with Immunovia AB developed a new technology combining the specificity of antibodies with the sensitivity of next-generation sequencing. The technology will pave the way for the next generation of biomarker discovery program in cancer, where there is still a tremendous unmet need.

"We have for years been developing advanced diagnostic approaches for multiplexed analysis of serum proteins, using a single drop of blood, for the purpose of early diagnosis of complex disease, in particular cancer. There is massive amount of information in blood and our combination of proteomics and genomics will open up for rapidly associating early tumor development with protein signatures. This in turn will benefit the patients with a more favorable outcome and overall survival. We are very excited with this novel next generation of biomarker discovery tool", says Professor Carl Borrebaeck, director of CREATE Health Cancer Center at Lund University.

About the method:

The novel approach, denoted ProMIS, Protein detection using Multiplex Immunoassay in Solution, circumvents the inherent technical problems in conventional biomarker research traditionally utilizing biomatrices, e.g. planar- or bead-based arrays, by instead profiling serum proteins in solution . Since the entire process can be performed in solution most inherent problems traditionally present using solid support is avoided. ProMIS utilizes scFv antibody fragments tagged with a DNA barcode. The barcoded scFvs are mixed with biotinylated serum proteins coupled to streptavidin-coated magnetic beads, and bound antibodies are detected, using next generation sequencing (NGS). The combination of proteomics (antibodies) and genomics (NGS) will uniquely result in both a multiplex and ultra-sensitive read-out which in turn will increase the possibilities and success rate to find tumors earlier. This will benefit both patient and society.

Credit: 
Lund University

Precision trial highlights need for new approach to treating genomically complex cancers

A pioneering lung cancer study, led by the University of Birmingham's Cancer Research UK Clinical Trials Unit, has highlighted important factors that will need to be considered in the next wave of precision medicine studies particularly in treating genomically complicated cancers.

Published in Nature, the National Lung Matrix Trial (NLMT) is the world's largest precision medicine clinical trial for non-small-cell lung cancer (NSCLC) patients, funded by Cancer Research UK (CRUK) and supported by the charity's Stratified Medicine Programme Phase 2 (SMP2) screening platform.

A £25 million collaboration with Pfizer, AstraZeneca and other pharmaceutical companies, and with support from the NHS, the NLMT matches different treatments to different groups of patients based on genetic changes in their cancer.

Using an innovative trial design that incorporates multiple treatment arms, NLMT allows for a more flexible and informed approach than traditional clinical trials. Each arm tests a different targeted treatment matched to a different genetic subtype of NSCLC.

The trial's adaptive approach makes it possible for new drugs and combinations to be added as soon as they become available or retired quickly and easily if evidence suggests they aren't effective.

Patients who sign up to take part in NLMT are genetically screened by the Cancer Research UK SMP2 to understand more about their tumour type, and whether they possess the relevant genetic signatures to be matched to a targeted treatment.

Since the trial opened to recruitment in May 2015 until November 2019, 288 patients have been recruited to the 19 targeted treatment cohorts on the trial.

Results revealed key learnings on the use of precision medicine, such as how the appropriate pre-clinical work is essential in defining appropriate biomarker-drug combinations to test in the clinic, on ensuring that the best drugs available are used to hit the genomic targets, the scale of attrition from large screening platforms, and the importance of analysing and publishing outcome data of an ongoing study.

The attrition rate was high with only a 5% of SMP2 patients receiving treatment on NLMT. As trials often come towards the end of the patient journey, cancer progression might make patients too unwell to be recruited onto trials. Targeted therapy trials should take place much earlier in the cancer journey and use blood based genomic testing for fast turn-round of the information needed to match patients to drugs.

Lead author Professor Gary Middleton, Medical Oncologist at the University of Birmingham said: "This study provides data on how the next wave of trialling targeted therapies to treat complex cancers should be designed. This is the first trial of its kind, the novel Bayesian design allows outcome data from open cohorts that are still recruiting to be reported alongside closed cohorts, whereas previous umbrella studies have only published the results of completed arms and cohorts.

"We found genomically complicated tumours are hard to treat with targeted therapy, especially with monotherapy. The models we test drugs on are too simplistic - they don't represent the genomic complexity of the tumour, or the trajectory of how they rapidly evolve. We need models that take into account the complexity and trajectory of a human tumour to decide if a drug is going to work."

Professor Pam Kearns, Director of Birmingham's CRUK Clinical Trials Unit and University of Birmingham's Institute of Cancer and Genomic Sciences, said "The National Lung Matrix Trial is a landmark complex innovative design trial and represents a step-change in our understanding of how to develop precision medicine in challenging to treat cancers."

Dr Ian Walker, Director of Research at Cancer Research UK said: "The National Lung Matrix trial is a flagship programme for Cancer Research UK and continues to provide significant insights into how we should treat genomically diverse cancers, such as lung. Not only will it shape the thinking for future studies delivering complex precision medicines, but it has also demonstrated how molecular diagnostic testing and clinical research can work in a truly integrated manner within the National Health Service across the UK to allow patients to access the latest new treatments."

NLMT patient Paul Inett, 72 years old, said "I was diagnosed with stage four metastatic lung cancer in late April 2015 that had spread to glands in my chest. I was referred to Professor Gary Middleton at the Queen Elizabeth Hospital Birmingham and was recruited onto the National Lung Matrix Trial. Fortunately my biopsy showed a genetic marker that matched to one of the treatment arms on the trial and received a targeted cancer drug. This ground breaking research saved my life. I'm now able to live a relatively active life including spending time with my family and taking exercise classes at my local gym".

Next steps in the NLMT are to continue recruiting patients. A new combination arm has just been added to the study and opened earlier in June. There will also be further publications from the individual arms and cohorts, and translational laboratory work.

Credit: 
University of Birmingham

Coumarin compounds from oak barrels could contribute to bitter taste in wine and spirits

Wine and spirits are complex mixtures of flavor and aroma compounds, some of which arise during aging in wooden barrels. Among other compounds, oak wood releases coumarins, but how they affect wine's sensory properties is unclear. Now, researchers reporting in ACS' Journal of Agricultural and Food Chemistry have detected and measured six coumarins in oak wood, wine and spirits, showing that a combination of these compounds can produce a bitter taste.

Oak barrels are often used during the aging of wine and some spirits, including cognac, rum and whiskey. Prolonged contact of the beverages with wood alters their sensory properties, and many oak compounds that contribute to color, aroma, mouthfeel and taste have been identified. Oak wood also contains coumarins -- compounds produced by plants as a defense against predators. Many edible plants make coumarins, which at high doses are used as blood thinners, but the tiny amounts in most foods are not large enough to have anti-coagulant effects. Axel Marchal and colleagues wanted to determine exactly how much of these substances end up in wine and spirits, and how they contribute to the taste of these beverages. 

To find out, the researchers first screened an oak wood extract for various coumarins using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). They identified five coumarins already known to be present in oak wood, as well as a previously undetected one called fraxetin. In a taste test, trained sensory panelists described five of the compounds as bitter, whereas fraxetin had a slightly sour taste. The team then measured coumarin concentrations in 90 commercial red or white wines and in 28 spirits. In general, higher levels of coumarins were found in red wines, which are aged for a longer time and in newer barrels, than in white wines. Spirits showed higher levels of coumarins than wines, possibly because of longer aging and a greater alcohol content. The tiny amounts of most of the compounds were below levels that humans can taste, but when the researchers added a mixture of all six to non-oak-aged wines or spirits, sensory panelists detected a significant increase in bitter flavor. Future studies could examine ways to reduce the coumarin content of wooden barrels to produce better-tasting wines and spirits, the researchers say.

Credit: 
American Chemical Society

FSU researchers find sun, rain transform asphalt binder into potentially toxic compounds

image: Photos of asphalt binder before and after being exposed to water and a solar simulator for a week.

Image: 
Sydney Niles

TALLAHASSEE, Fla. -- A dramatic oil spill, such as the Deepwater Horizon accident in the Gulf of Mexico a decade ago, can dominate headlines for months while scientists, policymakers and the public fret over what happens to all that oil in the environment. However, far less attention is paid to the fate of a petroleum product that has been spread deliberately across the planet for decades: asphalt binder.

Now a study by chemists at the Florida State University-headquartered National High Magnetic Field Laboratory shows that asphalt binder, when exposed to sun and water, leaches thousands of potentially toxic compounds into the environment. The study was published in the journal Environmental Science & Technology.

Asphalt binder, also called asphalt cement, is the glue that holds together the stones, sand and gravel in paved roads. The heavy, black, sticky goo is derived from bottom-of-the-barrel crude oil at the tail end of the distillation process.

The MagLab, funded by the National Science Foundation and the State of Florida, is a world leader in the field of petroleomics, which studies the mind-numbingly complex hydrocarbons that make up crude oil and its byproducts. Using high-resolution ion cyclotron resonance (ICR) mass spectrometers, chemists there have developed expertise in identifying the tens of thousands of different types of molecules that a single drop can contain, and how that composition can be changed by time, bacteria or environmental conditions.

Ryan Rodgers, director of petroleum applications and of the Future Fuels Institute at the MagLab, had wanted for years to study asphalt binder using the ICR instruments. It was a logical next step in his group's years-long effort to better understand the structure and behavior of petroleum molecules and their potentially toxic effects. Previous studies had shown that soils and runoff near paved roads exhibit higher concentrations of polycyclic aromatic hydrocarbons (PAHs), which are known to be carcinogenic. Rodgers suspected there were dots connecting those PAHs and asphalt binder, and he wanted to find them.

"The long-term stability of petroleum-derived materials in the environment has always been a curiosity of mine," said Rodgers, who grew up on the Florida Gulf Coast. "Knowing their compositional and structural complexity, it seemed highly unlikely that they would be environmentally benign. How do silky smooth black roads turn into grey, rough roads? And where the heck did all the asphalt go?"

He finally acquired a jug of asphalt binder from a local paving company and handed the project off to Sydney Niles, a Ph.D. candidate in chemistry at Florida State, and MagLab chemist Martha Chacón-Patiño. They designed an experiment in which they created a film of binder on a glass slide, submerged it in water, and irradiated it in a solar simulator for a week, sampling the water at different timepoints to see what was in it. They suspected that the sun's energy would cause the reactive oxygen-containing compounds in the water to interact with the hydrocarbons in the binder, a process called photooxidation, thus creating new kinds of molecules that would leach into the water.

"We had this road sample and we shined fake sunlight on it in the presence of water," explained Niles, lead author on the paper. "Then we looked at the water and we found that there are all these compounds that are derived from petroleum, and probably toxic. We also found that more compounds are leached over time."

The hydrocarbons they found in the water contained more oxygen atoms. The scientists were confident that the sun was indeed the mechanism behind the process because far fewer compounds leached into a control sample that had been kept in the dark, and those had fewer oxygen atoms. In fact, the amount of water-soluble organic compounds per liter that the team found in the water of the irradiated sample after a week was more than 25 times higher than in the sample that had been left in the dark. And, using the lab's ICR magnets, they detected more than 15,000 different carbon-containing molecules in the water from the irradiated sample.

Given the general toxicity of PAHs, these results are cause for concern, Niles and Rodgers said. But the team will need to do more experiments to investigate that toxicity.

"We have definitively shown that asphalt binder has the potential to generate water-soluble contaminants, but the impact and fate of these will be the subject of future research," Rodgers said.

They also plan more studies to look at exactly how the compounds are transforming and if different categories of petroleum molecules behave differently.

Niles worries about hydrocarbons in and out of the lab. If she forgets to bring her reusable produce bags to the grocery store, she'd rather juggle her veggies on the way to the register than use a store-furnished plastic bag. Although these findings aren't good news for the planet, she said, they could lead to positive change.

"Hopefully it's motivation for a solution," she said. "I hope that engineers can use this information to find a better alternative, whether it's a sealant you put on the asphalt to protect it or finding something else to use to pave roads."

Credit: 
Florida State University

How flies flip around on take-off from an upside- down position

image: Fly reorientation captured by a high-speed camera filming at 1600 images per second.

Image: 
Anna Verbe

Flies are able to right themselves very quickly when taking off from an upside-down position. Scientists from the CNRS and from The Institute of Movement Science (ISM) at Aix-Marseille Université studying this phenomenon discovered the surprising way these insects begin by turning their bodies before their heads on take-off. The research will be published on 15 July 2020 in the Journal of Experimental Biology.

With its legs pointing up and its wings down towards the floor, a fly can casually rest upside-down on a ceiling, but on take-off, it will right itself very quickly. Researchers from the CNRS and Aix-Marseille Université looked at how the insect flips itself around when taking off. With the aid of a high-speed camera, the scientists discovered that, contrary to cats which land on their feet by first turning their heads, flies begin by turning their bodies. The insect reorients itself within six wing beats at a speed of 10,000°/s, or approximately 30 revolutions per second. The whole movement takes approximately 0.05 s with the head turning 0.016 s later than the body.

According to the scientists, during take-off flies flip their bodies before their heads due to an inherent stabilisation reflex. Small stabilisers near the wings function as a type of gyroscope. Humans have a similar reflex which kicks in when they continue to stare at something despite turning their bodies around. In the study, the team included modelling which suggested that, during reorientation, the insect stabilises its visual system before resuming normal flight. The research aims to elucidate how flies orient themselves relative to a vertical axis. The scientists will now further their research to investigate the effect of light on a fly's orientation.

Credit: 
CNRS

New hyperbaric oxygen therapy protocol can improve cognitive function of older adults

The Sagol Center for Hyperbaric Medicine and Research at Shamir Medical Center, together with the Sackler School of Medicine and Sagol School of Neuroscience at Tel Aviv University, announced today that a peer-reviewed study has demonstrated for the first time that hyperbaric oxygen therapy (HBOT) can significantly enhance the cognitive performance of healthy older adults.

The main areas of improvement were attention, information processing speed, and executive function, in addition to the global cognitive function, all of which typically decline with age. Moreover, there was a significant correlation between the cognitive changes and improved cerebral blood flow in specific brain locations.

The study was published on July 15, 2020, in the peer-reviewed journal Aging.

Professor Shai Efrati, Head of the Sagol Center for Hyperbaric Medicine and Research, and Head of Research & Development at Shamir Medical Center, and an Associate Professor at Sackler School of Medicine and Sagol School of Neuroscience at Tel Aviv University, and Dr. Amir Hadanny, the Sagol Center for Hyperbaric Medicine and Research, designed the study based on a unique HBOT protocol developed at the Sagol Center over the past 10 years. The randomized controlled clinical trial included 63 healthy adults (>64) who underwent either HBOT (n=33) or a control period (n=30) for three months. The study's primary endpoint included a change in general cognitive function measured by a standardized comprehensive battery of computerized cognitive assessments before and after the intervention or control. Cerebral blood flow (CBF) was evaluated by a novel magnetic resonance imaging technique for brain perfusion.

"Age-related cognitive and functional decline has become a significant concern in the Western world. Major research efforts around the world are focused on improving the cognitive performance of the so-called 'normal' aging population," said Prof. Efrati. "In our study, for the first time in humans, we have found an effective and safe medical intervention that can address this unwanted consequence of our age-related deterioration."

"Over years of research, we have developed an advanced understanding of HBOT's ability to restore brain function. In the past, we have demonstrated HBOT's potential to improve/treat brain injuries such as stroke, traumatic brain injury and anoxic brain injury (due to sustained lack of oxygen supply) by increasing brain blood flow and metabolism," explained Dr. Amir Hadanny. "This landmark research could have a far-reaching impact on the way we view the aging process and the ability to treat its symptoms."

During HBOT, the patient breaths in pure oxygen in a pressurized chamber where the air pressure is increased to twice that of normal air. This process increases oxygen solubility in the blood that travels throughout the body. The added oxygen stimulates the release of growth factors and stem cells, which promote healing. HBOT has been applied worldwide mostly to treat chronic non-healing wounds.

There is a growing body of evidence on the regenerative effects of HBOT. The researchers have demonstrated that the combined action of delivering high levels of oxygen (hyperoxia) and pressure (hyperbaric environment), leads to significant improvement in tissue oxygenation while targeting both oxygen and pressure sensitive genes, resulting in restored and enhanced tissue metabolism. Moreover, these targeted genes induce stem cell proliferation, reduce inflammation and induce generation of new blood vessels and tissue repair mechanisms.

"The occlusion of small blood vessels, similar to the occlusions which may develop in the pipes of an 'aging' home, is a dominant element in the human aging process. This led us to speculate that HBOT may affect brain performance of the aging population," Prof. Efrati explained. "We found that HBOT induced a significant increase in brain blood flow, which correlated with cognitive improvement, confirming our theory. One can conjecture that similar beneficial effect of HBOT can be induced in other organs of the aging body. These will be investigated in our upcoming research."

Credit: 
American Friends of Tel Aviv University

Exploring how a scorpion toxin might help treat heart attacks

Scientists are discovering potential life-saving medicines from an unlikely source: the venom of creatures like snakes, spiders and scorpions. Scorpion venom, in particular, contains a peptide that has beneficial effects on the cardiovascular system of rats with high blood pressure. Now, researchers reporting in ACS' Journal of Proteome Research say they know a little more about how that happens.

Scorpion venom is a complex mixture of biologically active molecules, including neurotoxins, vasodilators and antimicrobial compounds, among many others. Although the venom is painful for those unlucky enough to be stung by a scorpion, individual venom compounds, if isolated and administered at the proper dose, could have surprising health benefits. One promising compound is the tripeptide KPP (Lys-Pro-Pro), which is a piece of a larger scorpion toxin. KPP was shown to cause blood vessels to dilate and blood pressure to decline in hypertensive rats. Thiago Verano-Braga, Adriano Pimenta and colleagues wanted to find out what exactly KPP does to heart muscle cells. The answer could explain the peptide's beneficial effects.

The researchers treated mouse cardiac muscle cells in a petri dish with KPP and measured the levels of proteins expressed by the cells at different times using mass spectrometry. They found that KPP regulated proteins associated with cell death, energy production, muscle contraction and protein turnover. In addition, the scorpion peptide triggered the phosphorylation of a mouse protein called AKT, which activated it and another protein involved in the production of nitric oxide, a vasodilator. KPP treatment, however, caused dephosphorylation of a protein called phospholamban, leading to reduced contraction of cardiac muscle cells. Both AKT and phospholamban are already known to protect cardiac tissue from injuries caused by lack of oxygen. These results suggest that KPP should be further investigated as a drug lead for heart attacks and other cardiovascular problems, the researchers say.

Credit: 
American Chemical Society

NUS researchers gives robots intelligent sensing abilities to carry out complex tasks

video: This novel system developed by computer scientists and materials engineers from the National University of Singapore combines an artificial brain system with human-like electronic skin, and vision sensors, to make robots smarter.

Image: 
National University of Singapore

Picking up a can of soft drink may be a simple task for humans, but this is a complex task for robots - it has to locate the object, deduce its shape, determine the right amount of strength to use, and grasp the object without letting it slip. Most of today's robots operate solely based on visual processing, which limits their capabilities. In order to perform more complex tasks, robots have to be equipped with an exceptional sense of touch and the ability to process sensory information quickly and intelligently.

A team of computer scientists and materials engineers from the National University of Singapore (NUS) has recently demonstrated an exciting approach to make robots smarter. They developed a sensory integrated artificial brain system that mimics biological neural networks, which can run on a power-efficient neuromorphic processor, such as Intel's Loihi chip. This novel system integrates artificial skin and vision sensors, equipping robots with the ability to draw accurate conclusions about the objects they are grasping based on the data captured by the vision and touch sensors in real-time.

"The field of robotic manipulation has made great progress in recent years. However, fusing both vision and tactile information to provide a highly precise response in milliseconds remains a technology challenge. Our recent work combines our ultra-fast electronic skins and nervous systems with the latest innovations in vision sensing and AI for robots so that they can become smarter and more intuitive in physical interactions," said Assistant Professor Benjamin Tee from the NUS Department of Materials Science and Engineering. He co-leads this project with Assistant Professor Harold Soh from the Department of Computer Science at the NUS School of Computing.

The findings of this cross-disciplinary work were presented at the renowned conference Robotics: Science and Systems conference in July 2020.

Human-like sense of touch for robots

Enabling a human-like sense of touch in robotics could significantly improve current functionality, and even lead to new uses. For example, on the factory floor, robotic arms fitted with electronic skins could easily adapt to different items, using tactile sensing to identify and grip unfamiliar objects with the right amount of pressure to prevent slipping.

In the new robotic system, the NUS team applied an advanced artificial skin known as Asynchronous Coded Electronic Skin (ACES) developed by Asst Prof Tee and his team in 2019. This novel sensor detects touches more than 1,000 times faster than the human sensory nervous system. It can also identify the shape, texture and hardness of objects 10 times faster than the blink of an eye.

"Making an ultra-fast artificial skin sensor solves about half the puzzle of making robots smarter. They also need an artificial brain that can ultimately achieve perception and learning as another critical piece in the puzzle," added Asst Prof Tee, who is also from the NUS Institute for Health Innovation & Technology.

A human-like brain for robots

To break new ground in robotic perception, the NUS team explored neuromorphic technology - an area of computing that emulates the neural structure and operation of the human brain - to process sensory data from the artificial skin. As Asst Prof Tee and Asst Prof Soh are members of the Intel Neuromorphic Research Community (INRC), it was a natural choice to use Intel's Loihi neuromorphic research chip for their new robotic system.

In their initial experiments, the researchers fitted a robotic hand with the artificial skin, and used it to read braille, passing the tactile data to Loihi via the cloud to convert the micro bumps felt by the hand into a semantic meaning. Loihi achieved over 92 per cent accuracy in classifying the Braille letters, while using 20 times less power than a normal microprocessor.

Asst Prof Soh's team improved the robot's perception capabilities by combining both vision and touch data in a spiking neural network. In their experiments, the researchers tasked a robot equipped with both artificial skin and vision sensors to classify various opaque containers containing differing amounts of liquid. They also tested the system's ability to identify rotational slip, which is important for stable grasping.

In both tests, the spiking neural network that used both vision and touch data was able to classify objects and detect object slippage. The classification was 10 per cent more accurate than a system that used only vision. Moreover, using a technique developed by Asst Prof Soh's team, the neural networks could classify the sensory data while it was being accumulated, unlike the conventional approach where data is classified after it has been fully gathered. In addition, the researchers demonstrated the efficiency of neuromorphic technology: Loihi processed the sensory data 21 per cent faster than a top performing graphics processing unit (GPU), while using more than 45 times less power.

Asst Prof Soh shared, "We're excited by these results. They show that a neuromorphic system is a promising piece of the puzzle for combining multiple sensors to improve robot perception. It's a step towards building power-efficient and trustworthy robots that can respond quickly and appropriately in unexpected situations."

"This research from the National University of Singapore provides a compelling glimpse to the future of robotics where information is both sensed and processed in an event-driven manner combining multiple modalities. The work adds to a growing body of results showing that neuromorphic computing can deliver significant gains in latency and power consumption once the entire system is re-engineered in an event-based paradigm spanning sensors, data formats, algorithms, and hardware architecture," said Mr Mike Davies, Director of Intel's Neuromorphic Computing Lab.

This research was supported by the National Robotics R&D Programme Office (NR2PO), a set-up that nurtures the robotics ecosystem in Singapore through funding research and development (R&D) to enhance the readiness of robotics technologies and solutions. Key considerations for NR2PO's R&D investments include the potential for impactful applications in the public sector, and the potential to create differentiated capabilities for our industry.

Next steps

Moving forward, Asst Prof Tee and Asst Prof Soh plan to further develop their novel robotic system for applications in the logistics and food manufacturing industries where there is a high demand for robotic automation, especially moving forward in the post-COVID era.

Credit: 
National University of Singapore

Low-cost catalyst helps turn seawater into fuel at scale

The Navy's quest to power its ships by converting seawater into fuel is one step nearer fruition.

University of Rochester chemical engineers, in collaboration with researchers at the Naval Research Laboratory, the University of Pittsburgh, and OxEon Energy, have demonstrated that a potassium-promoted molybdenum carbide catalyst efficiently and reliably converts carbon dioxide to carbon monoxide, a critical step in the process.

"This is the first demonstration that this type of molybdenum carbide catalyst can be used on an industrial scale," says Marc Porosoff, assistant professor of chemical engineering at Rochester. In a paper in Energy & Environmental Science, the researchers describe an exhaustive series of experiments they conducted at molecular, laboratory and pilot scales to document the catalyst's suitability for scale-up.

If Navy ships could create their own fuel from the seawater they travel through, they could remain in continuous operation. Other than a few nuclear-powered aircraft carriers and submarines, most Navy ships must periodically align themselves alongside tanker ships to replenish their fuel oil, which can be difficult in rough weather. In 2014, a Naval Research Laboratory team led by Heather Willauer announced it had used a catalytic converter to extract carbon dioxide and hydrogen from seawater and then converted the gases into liquid hydrocarbons at a 92 percent efficiency rate.

Since then the focus has been on increasing the efficiency of the process and scaling it up to produce fuel in sufficient quantities.

The carbon dioxide extracted from seawater is extremely difficult to convert directly into liquid hydrocarbons with existing methods. So, it is necessary to first convert carbon dioxide into carbon monoxide via the reverse water-gas shift (RWGS) reaction, which can then be converted into liquid hydrocarbons via Fischer-Tropsch synthesis (FTS). Typically, catalysts for RWGS contain expensive precious metals and deactivate rapidly under reaction conditions. However, the potassium-modified molybdenum carbide catalyst is synthesized from low-cost components and did not show any signs of deactivation during continuous operation of the 10 day pilot-scale study.

That's why this demonstration of molybdenum carbide catalyst is important.

Porosoff, who first began working on the project while serving as a postdoctoral research associate with Willauer's team, discovered that adding potassium to a molybdenum carbide catalyst supported on a surface of gamma alumina could serve as a low-cost, stable, and highly selective catalyst for converting carbon dioxide into carbon monoxide during RWGS.

The potassium lowers the energy barrier associated with the RWGS reaction, while the gamma alumina - marked with grooves and pores, much like a sponge - helps ensure that the molybdenum carbide catalyst particles remain dispersed, maximizing the surface area available for reaction, Porosoff says.

To determine whether potassium-promoted molybdenum carbide might also be useful for capturing and converting carbon dioxide from power plants, the lab will conduct further experiments to test the catalyst's stability when exposed to common contaminants found in flue gas such as mercury, sulfur, cadmium and chlorine.

Credit: 
University of Rochester

Bed bugs modify microbiome of homes they infest

image: Bed bugs can modify microbial communities in home they infest.

Image: 
Benoit Guenard

Homes infested by bed bugs appear to have different bacterial communities - often referred to as microbiomes - than homes without bed bugs, according to a first-of-its-kind study from North Carolina State University. In addition, once bed bug infestations were eradicated, home microbiomes became more similar to those in homes that never had bed bugs. The findings could be an important step in lifting the veil on the factors involved in indoor environmental quality and how to improve it.

Microbes can affect indoor air quality. So NC State entomologists Coby Schal and Madhavi Kakumanu wanted to learn more about the microbiomes of bed bugs, whether bed bugs can shape the microbial community in homes they infest, and whether eliminating bed bugs changes the microbiome of homes that were once infested.

The study, held in an apartment complex in Raleigh, compared the microbiomes of bed bugs with the microbiomes in the household dust of infested homes as well as the microbiomes in apartments that had no bed bugs. Nineteen infested homes were studied over the course of four months; seven were treated with heat to eliminate bed bugs after the initial sample was taken, while 12 infested homes were treated after one month. These homes were compared with 11 homes that had no bed bugs.

The results showed similarities between the microbiomes of bed bugs and the dust-associated microbiomes of infested homes, mostly through the presence of Wolbachia, a symbiotic bacterium that comprises the majority of the bacterial abundance in bed bugs. Bed bug and infested home microbiomes differed significantly from the microbial communities of uninfested homes.

"There is a link between the microbiome of bed bugs and the microbiome of household dust in bed bug infested homes," said Schal, the Blanton J. Whitmire Distinguished Professor of Entomology at NC State and co-corresponding author of the paper. "No previous study has reported the impact of chronic pest infestations on indoor microbial diversity."

The study also showed that, after bed bugs were eliminated, infested home microbiomes gradually became more like those in homes without bed bugs.

"The elimination of the bed bugs resulted in gradual shifts in the home microbial communities toward those of uninfested homes," Kakumanu, an NC State research scholar in Schal's lab and co-corresponding author of the study, said. "This paper is the first experimental demonstration that eliminating an indoor pest alters the indoor microbiome toward that of uninfested homes."

"Bed bug infestations are problematic in many homes in both developed and developing countries," Schal said. "There is a critical need to investigate infestations from the perspective of indoor environmental quality, and this paper represents a first step toward this end." 

Credit: 
North Carolina State University

AI model to forecast complicated large-scale tropical instability waves in Pacific Ocean

Large-scale oceanic phenomena are complicated and often involve many natural processes. Tropical instability wave (TIW) is one of these phenomena.

Pacific TIW, a prominent prevailing oceanic event in the eastern equatorial Pacific Ocean, is featured with cusp-shaped waves propagating westward at both flanks of the tropical Pacific cold tongue.

The forecast of TIW has long been dependent on physical equation-based numerical models or statistical models. However, many natural processes need to be considered for understanding such complicated phenomena.

Recently, a research team led by Prof. LI Xiaofeng from the Institute of Oceanology of the Chinese Academy of Sciences (IOCAS) studied this type of complex oceanic phenomena through artificial intelligence (AI) technologies.

The team member includes ZHENG Gang from the Second Institute of Oceanology of Ministry of Natural Resources, ZHANG Ronghua from IOCAS, and LIU Bin from Shanghai Ocean University.

They used satellite data-driven deep learning model to forecast the complicated thousand-kilometer scale TIW for the first time in the world. Their study was published in Science Advances on July 15.

Basic rules governing the complicated oceanic phenomena are usually profoundly hidden in the fast-increasing satellite remote sensing big data itself. They need to be dug up by powerful information mining techniques such as deep learning in the AI field.

"AI technology may lead to a promising alternative for modeling complicated oceanic phenomena and circumventing the difficulties faced by traditional numerical models," said Prof. LI.

In this work, the researchers developed a deep learning model for forecasting sea surface temperature (SST) field associated with TIW based on current and previous satellite-derived SST data.

The long-term test of nine-year SST data showed that the model efficiently and accurately forecasted SST evolution and captured TIW propagation's spatial and temporal variation.

The study demonstrates that a purely data-driven and AI-based information mining paradigm can be a robust and promising way to model and forecast complicated oceanic phenomena in the satellite remote sensing Big Data Era.

"AI-based models, statistical models, and traditional numerical models can complement each other and provide a novel perspective for studying complicated oceanic features," said Prof. LI.

A review article by Prof. LI's group was published in National Science Review on March 19, which systematically reviewed deep-learning-based information mining from ocean remote-sensing imagery.

Credit: 
Chinese Academy of Sciences Headquarters

Translating skeletal movements, joint by joint

image: A global team of computer scientists has developed a novel deep-learning framework that automates the precise translation of human motion, specifically accounting for the wide array of skeletal structures and joints. The new framework will be presented at ACM SIGGRAPH 2020.

Image: 
Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or, Baoquan Chen

Every human body is unique, and the way in which a person's body naturally moves depends on myriad factors, including height, weight, size, and overall shape. A global team of computer scientists has developed a novel deep-learning framework that automates the precise translation of human motion, specifically accounting for the wide array of skeletal structures and joints.

The end result? A seamless, much more flexible and universal framework for replicating human motion in the virtual world.

The team of researchers hail from AICFVE, the Beijing Film Academy, ETH Zurich, Hebrew University of Jerusalem, Peking University, and Tel Aviv University, and plan to demonstrate their work during SIGGRAPH 2020. The conference, which will take place virtually this year starting 17 August, gathers a network of leading professionals who approach computer graphics and interactive techniques from different perspectives. SIGGRAPH continues to serve as the industry's premier venue for showcasing forward-thinking ideas and research. Registration for the virtual conference is now available.

Capturing the motion of humans remains a burgeoning and exciting field in computer animation and human-computer interaction. Motion capture (mocap) technology, particularly in filmmaking and visual effects, has made it possible to bring animated characters or digital actors to life. Mocap systems usually require the performer or actor to wear a set of markers or sensors that computationally capture their motions and 3D-skeleton poses. What remains a challenge in mocap is the ability to precisely transfer motion, also known as "motion retargeting," between human skeletons, where the skeletons might differ in their structure depending on the number of bones and joints involved.

To date, mocap systems have not been successful in retargeting skeletons with different structures in a fully automated way. Errors are typically introduced in positions where joint correspondence cannot be specified. The team set out to address this specific problem and demonstrate that the framework can accurately replicate motion retargeting without specifying explicit pairing between the varying data sets.

"Our development is essential for using data from multiple mocap datasets that are captured with different systems within a single model," Kfir Aberman, a senior author of the work and a researcher from AICFVE at the Beijing Film Academy, shared. "This enables the training of stronger, data-driven models that are setup-agnostic for various motion processing tasks."

The team's new motion processing framework contains special operators uniquely designed for motion data. The framework is general and can be used for various motion processing tasks. In particular, the researchers exploit its special properties to solve a practical problem in the mocap world, which makes their novel method widely applicable.

"I am particularly excited about the ability of our approach to encode motion into an abstract, skeleton-agnostic latent space," Dani Lischinski, a coauthor of the work and professor at the School of Computer Science and Engineering at the Hebrew University of Jerusalem, said. "A fascinating direction for future work would be to enable motion transfer between fundamentally different characters, such as bipeds and quadrupeds."

In addition to Aberman and Lischinski, the collaborators on "Skeleton-aware Networks for Deep Motion Retargeting" include Peizhuo Li, Olga Sorkine-Hornung, Daniel Cohen-Or, and Baoquan Chen. The team's paper and video can be found here and here.

Credit: 
Association for Computing Machinery

Flavored cigarette ban significantly reduced youth smoking, new study finds

image: Dr. Matthew Rossheim's research focuses on substance use and related health outcomes. He can be reached at mrosshei@gmu.edu.

Image: 
George Mason University

Despite a general decline in U.S. tobacco use since the 1950’s, tobacco use is still prevalent and a significant threat to public health. Previous research has shown that flavored cigarettes largely appeal to and are disproportionately used by underage smokers. Nearly 90% of smokers begin smoking by age 18, according to the U.S. Department of Health and Human Services. To reduce long-term health consequences and improve public health, preventing smoking initiation is key as is reducing the draw of flavored tobacco products.

On September 22, 2009, the U.S. Food and Drug Administration’s national ban on flavored cigarettes products went into effect. This banned the sale of flavored cigarettes other than menthol, but there was little information about the potential impact of this ban on youth smoking.

New research led by George Mason University’s College of Health and Human Services found that the flavored cigarette ban was linked to a significant reduction in smoking among youth and young adults.

Dr. Matthew Rossheim, assistant professor of global and community health, led the study published in the Journal of Adolescent Health. Researchers found that the flavored cigarette ban reduced smoking among youth (ages 12-17 years) by 43% and young adults (ages 18-25 years) by 27%.

“Our study suggests that the ban of flavored cigarettes was extremely effective at reducing smoking among young people,” explains Rossheim. “This shows incredible promise for future comprehensive bans of flavored tobacco products, including those in e-cigarettes, which to-date have received significant exemptions. Policymakers should take note of the evidence from this study and pass legislation to extend flavor bans to other tobacco and nicotine products.”

Rossheim and colleagues examined cigarette use among young people and adults from the 2002-2017 National Survey on Drug Use and Health data. This included nationally representative data collected every quarter each year, providing a more sensitive measure to detect changes in smoking behaviors than previous research, as well as an adult comparison group to test whether there was an overall reduction in smoking that could have been a result of other factors.

Rossheim and colleagues did not see a similar reduction in smoking among older smokers, which suggests that this ban was effective at reducing smoking specifically among young people and that the reduction was caused by the ban and not by other influences.

“We observed an increase in smoking of menthol cigarettes among youth right after the ban took effect,” adds Rossheim. “It appears that young people smoke menthol cigarettes more when other flavor options are no longer available.”

Menthol flavor was excluded from the 2009 ban. Prior research has also shown that menthol-flavored tobacco products are disproportionately used by African Americans, which may explain observed health disparities.

Rossheim and colleagues suggest that, to maximize their effectiveness among young people and to avoid increasing health disparities among African Americans, flavor bans should include all flavors and tobacco products.

About George Mason University

George Mason University is Virginia's largest and most diverse public research university. Located near Washington, D.C., Mason enrolls 38,000 students from 130 countries and all 50 states. Mason has grown rapidly over the past half-century and is recognized for its innovation and entrepreneurship, remarkable diversity and commitment to accessibility. For more information, visit https://www2.gmu.edu/.

About the College of Health and Human Services

George Mason University's College of Health and Human Services prepares students to become leaders and shape the public's health through academic excellence, research of consequence and interprofessional practice. The College enrolls 1,917 undergraduate students and 950 graduate students in its nationally recognized offerings, including: 5 undergraduate degrees, 12 graduate degrees, and 11 certificate programs. The College is transitioning to a college public health in the near future. For more information, visit https://chhs.gmu.edu/.

Journal

Journal of Adolescent Health

DOI

10.1016/j.jadohealth.2020.06.022

Credit: 
George Mason University

Common FDA-approved drug may effectively neutralize virus that causes COVID-19

image: But heparin, a blood thinner also available in non-anticoagulant varieties, binds tightly with the surface spike protein on SARS-CoV-2, potentially blocking the infection from happening.

Image: 
Rensselaer Polytechnic Institute

TROY, N.Y. -- A common drug, already approved by the Food and Drug Administration (FDA), may also be a powerful tool in fighting COVID-19, according to research published this week in Antiviral Research.

SARS-CoV-2, the virus that causes COVID-19, uses a surface spike protein to latch onto human cells and initiate infection. But heparin, a blood thinner also available in non-anticoagulant varieties, binds tightly with the surface spike protein, potentially blocking the infection from happening. This makes it a decoy, which might be introduced into the body using a nasal spray or nebulizer and run interference to lower the odds of infection. Similar decoy strategies have already shown promise in curbing other viruses, including influenza A, Zika, and dengue.

"This approach could be used as an early intervention to reduce the infection among people who have tested positive, but aren't yet suffering symptoms. But we also see this as part of a larger antiviral strategy," said Robert Linhardt, lead author and a professor of chemistry and chemical biology at Rensselaer Polytechnic Institute. "Ultimately, we want a vaccine, but there are many ways to combat a virus, and as we've seen with HIV, with the right combination of therapies, we can control the disease until a vaccine is found."

To infect a cell, a virus must first latch onto a specific target on the cell surface, slice through the cell membrane, and insert its own genetic instructions, hijacking the cellular machinery within to produce replicas of the virus. But the virus could just as easily be persuaded to lock onto a decoy molecule, provided that molecule offers the same fit as the cellular target. Once bound to a decoy, the virus would be neutralized, unable to infect a cell or free itself, and would eventually degrade.

In humans, SARS-CoV-2 binds to an ACE2 receptor, and the researchers hypothesized that heparin would offer an equally attractive target. In a binding assay, the researchers found that heparin bound to the trimeric SARS-CoV-2 spike protein at 73 picomoles, a measure of the interaction between the two molecules.

"That's exceptional, extremely tight binding," said Jonathan Dordick, a chemical and biological engineering professor at Rensselaer who is collaborating with Linhardt to develop the decoy strategy. "It's hundreds of thousands of times tighter than a typical antibody antigen. Once it binds, it's not going to come off."

To hear Linhardt and Dordick discuss this research, watch this video.

Internationally recognized for his creation of synthetic heparin, Linhardt said that, in reviewing sequencing data for SARS-CoV-2, the team recognized certain motifs on the spike protein and strongly suspected it would bind to heparin. In addition to the direct binding assay, the team tested how strongly three heparin variants -- including a non-anticoagulant low molecular weight heparin -- bind to SARS-CoV-2, and used computational modeling to determine the specific sites where the compounds bind to the virus. All the results confirm heparin as a promising candidate for the decoy strategy. The researchers have subsequently initiated work on assessments of antiviral activity and cytotoxicity in mammalian cells.

"This isn't the only virus that we're going to confront in a pandemic," Dordick said. "We don't really have great antivirals, but this is a pathway forward. We need to be in a position where we understand how things like heparin and related compounds can block virus entry."

In previous work, a team led by Linhardt and Dordick demonstrated the decoy strategy on viruses with a mechanism similar to SARS-CoV-2. In 2019, the team created a trap for dengue virus, attaching specific aptamers -- molecules the viral latches will bind to -- precisely to the tips and vertices of a five-pointed star made of folded DNA. Floating in the bloodstream, the trap lights up when sprung, creating the world's most sensitive test for mosquito-borne diseases. In work prior to that, they created a synthetic polymer configured to match the sialic acid latch points on influenza virus, reducing influenza A mortality in mice from 100% to 25% over 14 days.

"This innovative approach to effectively trapping virusus is a prime example of how biotechnology approaches developed at Rensselaer are being brought forward to address challenging global health problems," said Deepak Vashishth, the director of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer, of which both Dordick and Linhardt are a part. "Professors Dordick and Linhardt have worked collaboratively across disciplines, and their research shows promise even beyond this current pandemic."

"Characterization of glycosaminoglycan and novel coronavirus (SARS-CoV-2) spike glycoprotein binding interactions" was published in Antiviral Research. At Rensselaer, Linhardt and Dordick were joined on the research by Fuming Zhang, and also by researchers at the University of California San Diego, Duke University, and the University of George, Athens with support from the National Institutes of Health.

Credit: 
Rensselaer Polytechnic Institute

Researchers identify genetic factors that may influence COVID-19 susceptibility

CLEVELAND - A new Cleveland Clinic study has identified genetic factors that may influence susceptibility to COVID-19. Published today in BMC Medicine, the study findings could guide personalized treatment for COVID-19.

While the majority of confirmed COVID-19 cases result in mild symptoms, the virus does pose a serious threat to certain individuals. Morbidity and mortality rates rise dramatically with age and co-existing health conditions, such as cancer and cardiovascular disease. However, even young and otherwise healthy individuals have unpredictably experienced severe illness and death. These clinical observations suggest that genetic factors may influence COVID-19 disease susceptibility, but these factors remain largely unknown.

In this study, a team of researchers led by Feixiong Cheng, PhD, Genomic Medicine Institute, investigated genetic susceptibility to COVID-19 by examining DNA polymorphisms (variations in DNA sequences) in the ACE2 and TMPRSS2 genes. ACE2 and TMPRSS2 produce enzymes (ACE2 and TMPRSS2, respectively) that enable the virus to enter and infect human cells.

Looking at 81,000 human genomes from three genomic databases, they found 437 non-synonymous single-nucleotide variants in the protein-coding regions of ACE2 and TMPRSS2. They identified multiple potentially deleterious polymorphisms in both genes (63 in ACE2; 68 in TMPRSS2) that offer potential explanations for different genetic susceptibility to COVID-19 as well as for risk factors. Several ACE2 variants were found to be associated with cardiovascular and pulmonary conditions by potentially altering the angiotensinogen-ACE2. In addition, germline deleterious variants in the coding region of TMPRSS2, a key gene in prostate cancer, were found to occur in different cancer types, suggesting that oncogenic roles of TMPRSS2 may be linked to poor outcomes with COVID-19.

These findings demonstrate a possible association between ACE2 and TMPRSS2 polymorphisms and COVID-19 susceptibility, and indicate that a systematic investigation of the functional polymorphisms these variants among different populations could pave the way for precision medicine and personalized treatment strategies for COVID-19. However, all investigations in this study were performed in general populations, not with COVID-19 patient genetic data. Therefore, Dr. Cheng calls for a human genome initiative to validate his findings and to identify new clinically actionable variants to accelerate precision medicine for COVID-19.

"Because we currently have no approved drugs for COVID-19, repurposing already approved drugs could be an efficient and cost-effective approach to developing prevention and treatment strategies," Dr. Cheng said. "The more we know about the genetic factors influencing COVID-19 susceptibility, the better we will be able to determine the clinical efficacy of potential treatments."

Credit: 
Cleveland Clinic