CAMBRDGE, Mass. -- Imagine windows that not only provide a clear view and illuminate rooms, but also use sunlight to efficiently help power the building they are part of. MIT engineers report a new approach to harnessing the sun's energy that could allow just that.

A breakthrough discovery at UC San Diego may help aid the semiconductor industry's quest to squeeze more information on chips to accelerate the performance of electronic devices. So far, the semiconductor industry has been successful in its consistent efforts to reduce feature size on a chip. Smaller features mean denser packing of transistors, which leads to more powerful computers, more memory, and hopefully lower costs.

In recent years cell phones and PDAs—"Personal Digital Assistants"—have exploded in power, performance and features. They now often boast expanded memory, cameras, Global Positioning System receivers and the ability to record and store multimedia files and transfer them over wireless networks—in addition to the cell phone system—using WiFi, infrared and Bluetooth communications. Oh, yes, and make phone calls.

How does a magnet that cannot transport electricity transform into a superconductor that is a perfect conductor of electricity?

Magnetic resonance imaging yields deep insights ?into the atomic structure of a biomolecule, for instance, or into the tissues of a patient's body. Magnetic resonance imaging is one of the most important imaging methods used in medicine. However, MRI scanning has one major disadvantage: The machines are huge and extremely expensive, and almost impossible to transport.

CAMBRIDGE, Mass.—MIT researchers have achieved a significant advance in nanoscale lithographic technology, used in the manufacture of computer chips and other electronic devices, to make finer patterns of lines over larger areas than have been possible with other methods.

Their new technique could pave the way for next-generation computer memory and integrated-circuit chips, as well as advanced solar cells and other devices.

CAMBRIDGE, Mass. -- In today's data networks, traffic analysis -- determining which links are getting congested and why -- is usually done by computers at the network's edge, which try to infer the state of the network from the times at which different data packets reach their destinations.

New research from a team of University of Illinois Mechanical Science and engineering professors and students, published as an invited paper in Smart Materials and Structures, details how origami structures and bio-inspired design can be used to create a crawling robot.

A newly-unveiled discovery, which has been four years in the making, has the potential to change the way we look at autoimmune diseases and understand how and why immune cells begin to attack different tissues in the body.

"Once your body's tolerance for its own tissues is lost, the chain reaction is like a runaway train," says Michael Carroll, PhD, of Boston Children's Hospital and Harvard Medical School (HMS). "The immune response against your own body's proteins, or antigens, looks exactly like it's responding to a foreign pathogen."

LOS ALAMOS, N.M., Aug. 24, 2017--Biological "detectives" are tracking down biothreats such as the bacteria that causes tularemia ("rabbit fever"), but they constantly face the challenge of avoiding false positives. Sounding the alarm over a bioattack, only to find it's a harmless relative in the same genus, reduces credibility and public trust.