SANTA CRUZ, CA--Using one of the most powerful supercomputers in the world to simulate the halo of dark matter that envelopes our galaxy, researchers found dense clumps and streams of the mysterious stuff lurking in the inner regions of the halo, in the same neighborhood as our solar system.

"In previous simulations, this region came out smooth, but now we have enough detail to see clumps of dark matter," said Piero Madau, professor of astronomy and astrophysics at the University of California, Santa Cruz.

New Haven, Conn. — When Yale astrophysicist Kevin Schawinski and his colleagues at Oxford University enlisted public support in cataloguing galaxies, they never envisioned the strange object Hanny van Arkel found in archived images of the night sky.

The Dutch school teacher, a volunteer in the Galaxy Zoo project that allows members of the public to take part in astronomy research online, discovered a mysterious and unique object some observers are calling a "cosmic ghost."

Globular star clusters, dense bunches of hundreds of thousands of stars, contain some of the oldest surviving stars in the Universe. A new international study of globular clusters outside our Milky Way Galaxy has found evidence that these hardy pioneers are more likely to form in dense areas, where star birth occurs at a rapid rate, instead of uniformly from galaxy to galaxy.

Scientists have studied superconductors and superfluids for decades. Now, researchers at Washington University in St. Louis have drawn the first detailed picture of the way a superfluid influences the behavior of a superconductor. In addition to describing previously unknown superconductor behavior, these calculations could change scientists' understanding of the motion of neutron stars.

Researchers believe that our universe began with the Big Bang about 13 billion years ago, and that soon after that event, matter began to form as small dust grains and gases. How the first stars formed from this dust and gas has been a burning question for years, but a state-of-the-art computer simulation now offers the most detailed picture yet of how these first stars in the universe came into existence, researchers say.

These findings will be published by the journal Science on Friday, 1 August. Science is the journal of AAAS, the nonprofit science society.

Mars Express closed in on the intriguing martian moon Phobos at 6:49 CEST on 23 July, flying past at 3 km/s, only 93 km from the moon. The ESA spacecraft's fly-bys of the moon have returned its most detailed full-disc images ever, also in 3-D, using the High Resolution Stereo Camera on board.

Phobos is what scientists call a 'small irregular body'. Measuring 27 km × 22 km × 19 km, it is one of the least reflective objects in the Solar System, thought to be a capture-asteroid or a remnant of the material that formed the planets.

Scientists have confirmed that at least one body in our solar system, other than Earth, has a surface liquid lake.

Using an instrument on NASA's Cassini orbiter, they discovered that a lake-like feature in the south polar region of Saturn's moon, Titan, is truly wet. The lake is about 235 kilometers, or 150 miles, long.

The visual and infrared mapping spectrometer, or VIMS, an instrument run from The University Arizona, identifies the chemical composition of objects by the way matter reflects light.

PASADENA, Calif.--Bars abound in spiral galaxies today, but this was not always the case. A group of 16 astronomers, led by Kartik Sheth of NASA's Spitzer Science Center at the California Institute of Technology, has found that bars tripled in number over the past seven billion years, indicating that spiral galaxies evolve in shape.

A team of European scientists working with COROT have discovered an exoplanet orbiting a star slightly more massive than the Sun. After just 555 days in orbit, the mission has now observed more than 50 000 stars and is adding significantly to our knowledge of the fundamental workings of stars.

The latest discovery, COROT-exo-4b is an exoplanet of about the same size as Jupiter. It takes 9.2 days to orbit its star, the longest period for any transiting exoplanet ever found.

A European-led team of astronomers are providing hints that a recent supernova may not be as normal as initially thought.

Instead, the star that exploded is now understood to have collapsed into a black hole, producing a weak jet, typical of much more violent events, the so-called gamma-ray bursts.

The object, SN 2008D, is thus probably among the weakest explosions that produce very fast moving jets. This discovery represents a crucial milestone in the understanding of the most violent phenomena observed in the Universe.