Earth

Earthquakes that last minutes rather than seconds are a relatively recent discovery, according to an international team of seismologists. Researchers have been aware of these slow earthquakes, only for the past five to 10 years because of new tools and new observations, but these tools may explain the triggering of some normal earthquakes and could help in earthquake prediction.

"When water boils, its molecules are released as vapor. We call this change of the physical state of matter a phase transition," explains Sebastian Diehl from the Institute of Theoretical Physics at the University of Innsbruck. Together with his colleagues from the Institute for Experimental Physics and the theorist Markus Mueller from the Complutense University of Madrid, he studied the transition between two quantum mechanical orders in a way never before observed.

What happened the last time a vegetated Earth shifted from an extremely cold climate to desert-like conditions? And what does it tell us about climate change today?

John Isbell is on a quest to coax that information from the geology of the southernmost portions of the Earth. It won't be easy, because the last transition from "icehouse to greenhouse" occurred between 335 and 290 million years ago.

Earth experienced ultimately cold climates several times in its history, such as glaciers reaching the tropical latitudes, and the ocean probably stayed completely frozen. This type of climate stage is known as snowball Earth.

Siberia was once tropical during the Ediacaran period about 580-570 million years ago, yet it was glaciated.

This study offers the first geometrically rigorous reconstruction of deformation in response to the India-Asia collision across a key portion of the western Himalaya.

The reconstruction demonstrates the viability of important concepts pertaining to the dynamic evolution of crustal-scale contractional systems.

First, despite variations in erosion and exhumation, the crystalline cores of mountain belts may be emplaced at depth.

Overfishing has reduced fish populations and biodiversity across much of the world's oceans. In response, fisheries are increasingly reliant on a handful of highly valuable shellfish. However, new research by the University of York shows this approach to be extremely risky.

Scientists look at past climates to learn about climate change and the ability to simulate it with computer models. One region that has received a great deal of attention is the Indo-Pacific warm pool, the vast pool of warm water stretching along the equator from Africa to the western Pacific Ocean.

How will rainfall patterns across the tropical Indian and Pacific regions change in a future warming world? Climate models generally suggest that the tropics as a whole will get wetter, but the models don't always agree on where rainfall patterns will shift in particular regions within the tropics.

A new study, published online May 19 in the journal Nature Geoscience, looks to the past to learn about the future of tropical climate change, and our ability to simulate it with numerical models.

One of the basic principles of nanotechnology is that when you make things extremely small—one nanometer is about five atoms wide, 100,000 times smaller than the diameter of a human hair—they are going to become more perfect.

"Perfect in the sense that their arrangement of atoms in the real world will become more like an idealized model," says University of Vermont engineer Frederic Sansoz, "with smaller crystals—in for example, gold or copper—it's easier to have fewer defects in them."

The San Andreas fault system forms the boundary between the Pacific and North American tectonic plates in California (United States).

Researchers agree that this plate boundary developed about 27 million years ago and that about 315 km of horizontal offset has occurred in the Neogene period (23 million years ago to the present day).

Researchers also think that the San Andreas fault was inactive between about 23 and 50 million years ago, based on the correlation of two sandstone formations that were deposited in a deep-ocean basin about 40 million years ago.

Physicists may have created the smallest drops of liquid ever made in the lab.

That possibility has been raised by the results of a recent experiment conducted by Vanderbilt physicist Julia Velkovska and her colleagues at the Large Hadron Collider, the world's largest and most powerful particle collider located at the European Laboratory for Nuclear and Particle Physics (CERN) in Switzerland. Evidence of the minuscule droplets was extracted from the results of colliding protons with lead ions at velocities approaching the speed of light.

Researchers have shown that, by using global positioning systems (GPS) to measure ground deformation caused by a large underwater earthquake, they can provide accurate warning of the resulting tsunami in just a few minutes after the earthquake onset. For the devastating Japan 2011 event, the team reveals that the analysis of the GPS data and issue of a detailed tsunami alert would have taken no more than three minutes. The results are published on 17 May in Natural Hazards and Earth System Sciences, an open access journal of the European Geosciences Union (EGU).

The distortion of the ancient shoreline and flooding surface of the U.S. Atlantic Coastal Plain are the direct result of fluctuations in topography in the region and could have implications on understanding long-term climate change, according to a new study.

Sedimentary rocks from Virginia through Florida show marine flooding during the mid-Pliocene Epoch, which correlates to approximately 4 million years ago. Several wave-cut scarps, (rock exposures) which originally would have been horizontal, are now draped over a warped surface with up to 60 meters variation.

CAMBRIDGE, MA -- Graphene has dazzled scientists, ever since its discovery more than a decade ago, with its unequalled electronic properties, its strength and its light weight. But one long-sought goal has proved elusive: how to engineer into graphene a property called a band gap, which would be necessary to use the material to make transistors and other electronic devices.

Now, new findings by researchers at MIT are a major step toward making graphene with this coveted property. The work could also lead to revisions in some theoretical predictions in graphene physics.

Earthquakes, tsunamis, and other natural disasters often showcase the worst in human suffering – especially when those disasters strike populations who live in rapidly growing communities in the developing world with poorly enforced or non-existent building codes.