Earth

Microbes make tubular microtunnels on earth and perhaps on mars

Microbes make tubular microtunnels on earth and perhaps on mars

Boulder, Colo., USA - Tubular microtunnels believed to be the trace fossils formed by microbes inhabiting volcanic rock interiors have only been reported in oceanic and subglacial settings. This is the first observation of such features in basaltic volcanic glass erupted in a continental lake environment, the Fort Rock volcanic field.

An experiment seeks to make quantum physics visible to the naked eye

An experiment seeks to make quantum physics visible to the naked eye

Predictions from quantum physics have been confirmed by countless experiments, but no one has yet detected the quantum physical effect of entanglement directly with the naked eye. This should now be possible thanks to an experiment proposed by a team around a theoretical physicist at the University of Basel. The experiment might pave the way for new applications in quantum physics.

Mimicking the ingenuity of nature

Mimicking the ingenuity of nature

Nature shows how to do it: Photosynthesis is a process used by plants to create energy-rich organic compounds, usually in the form of carbohydrates, and oxygen (O2) from carbon dioxide (CO2) and water (H2O) driven by light. If we succeeded in mimicking this process on a large scale, numerous problems of humanity would probably be solved. Artificial photosynthesis could supply the Earth with fuels of high energy density such as hydrogen, methane or methanol while reducing the amount of carbon dioxide in our atmosphere and slowing down climate change.

A new vortex identification method for 3-D complex flow

A new vortex identification method for 3-D complex flow

"Vortex" is a common phenomenon in nature from tornado to turbulence, for example turbulence is a vortex buildup process (Figure 1). Investigators have realized that turbulence is not a purely stochastic process, but a process with coherent vortical structures which play a decisive role in fluid dynamics and energy transport. Therefore, accurate visualization of vortices from huge amount of data obtained by experiments and numerical simulations becomes a key issue to solve the turbulence which is a century-long scientific problem.

Preventing another Flint, Mich.; new research could lead to more corrosion-resistant water pipes

Preventing another Flint, Mich.; new research could lead to more corrosion-resistant water pipes

BINGHAMTON, NY - With documented public water problems in Flint, Mich., and Hoosick Falls, N.Y., caused by corrosion, understanding how copper is affected at the atomic level is critical to avoiding problems in future pipes. Corrosion-related damage costs more than three percent of the United States' Gross Domestic Product (about $503.1 billion, going by 2013 numbers).

Scientists challenge conventional wisdom to improve predictions of bootstrap current

Scientists challenge conventional wisdom to improve predictions of bootstrap current

Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have challenged understanding of a key element in fusion plasmas. At issue has been an accurate prediction of the size of the "bootstrap current" -- a self-generating electric current -- and an understanding of what carries the current at the edge of plasmas in doughnut-shaped facilities called tokamaks.

A compact, efficient single photon source that operates at ambient temperatures on a chip

Quantum information science and technology has emerged as a new paradigm for dramatically faster computation and secure communication in the 21st century. At the heart of any quantum system is the most basic building block, the quantum bit or qbit, which carries the quantum information that can be transferred and processed (this is the quantum analogue of the bit used in current information systems). The most promising carrier qbit for ultimately fast, long distance quantum information transfer is the photon, the quantum unit of light.

New tool allows scientists to visualize 'nanoscale' processes

Chemists at UC San Diego have developed a new tool that allows scientists for the first time to see, at the scale of five billionths of a meter, "nanoscale" mixing processes occurring in liquids.

UNC-Chapel Hill scientists find likely cause for recent southeast US earthquakes

(Chapel Hill, N.C. - May 3, 2016) - The southeastern United States should, by all means, be relatively quiet in terms of seismic activity. It's located in the interior of the North American Plate, far away from plate boundaries where earthquakes usually occur. But the area has seen some notable seismic events - most recently, the 2011 magnitude-5.8 earthquake near Mineral, Virginia that shook the nation's capital.

Quantum sensors for high-precision magnetometry of superconductors

Scientists at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have developed a new method that has enabled them to image magnetic fields on the nanometer scale at temperatures close to absolute zero for the first time. They used spins in special diamonds as quantum sensors in a new kind of microscope to generate images of magnetic fields in superconductors with unrivalled precision. In this way the researchers were able to perform measurements that permit new insights in solid state physics, as they report in Nature Nanotechnology.