Earth

The 2011 Tohoku tsunami was Japan's deadliest in more than 100 years. Despite an extraordinary level of preparedness by the Japanese, the tsunami caused more than 90 percent of the almost 20,000 fatalities last March.

Georgia Tech Associate Professor Hermann Fritz and his research team are studying the impact of the tsunami on the Sanriku coast.

Using eyewitness video and terrestrial laser scanners from atop the highest buildings that survived the tsunami, Fritz has mapped the tsunami's height and flood zone to learn more about the flow of the devastating currents.

Cambridge, Mass. - March 8, 2012 - Researchers in applied physics have cleared an important hurdle in the development of advanced materials, called metamaterials, that bend light in unusual ways.

Working at a scale applicable to infrared light, the Harvard team has used extremely short and powerful laser pulses to create three-dimensional patterns of tiny silver dots within a material. Those suspended metal dots are essential for building futuristic devices like invisibility cloaks.

A proposed new time-keeping system tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 billion years - the age of the Universe.

In a paper accepted for publication in the journal Physical Review Letters - with US researchers at the Georgia Institute of Technology and the University of Nevada – UNSW's Professor Victor Flambaum and colleague Dr Vladimir Dzuba report that their proposed single-ion clock would be accurate to 19 decimal places.

Tecnalia Research and Innovation is participating in the Saleme project together with the Spanish companies Demesel, Tesa and Ingema –the Matía Gerontology Institute–, in the development of a door for emergency exits adapted for people with functional diversity.

An international team of researchers from Germany and the Netherlands has developed a new material for storage media. For the first time they enable the switching of so called spin currents at room temperature in a vertical magnetic field. This increases the storage density distinctly. The novel switches can be used, for example, as read heads in future hard discs or as bits in non-volatile random access memory devices (MRAM). The research group from the Ruhr-Universität Bochum, the Helmholtz-Zentrum Berlin and Nijmegen are reporting their results in Nature Communications.

BLOOMINGTON, Ind. -- An Indiana University geophysical experiment detected unusual seismic signals associated with tornadoes that struck regions across the Midwest last week -- information that may have value for meteorologists studying the atmospheric activity that precedes tornado disasters.

The experiment by IU researchers involves deployment of more than 100 state-of-the-art digital seismographs in a broad swath of the U.S. midcontinent. One of the twisters that struck southeastern Missouri and southern Illinois on Feb. 29 passed through the seismic detection array.

MADISON – An international particle physics collaboration today announced its first results toward answering a longstanding question – how the elusive particles called neutrinos can appear to vanish as they travel through space.

A large-scale shift from coal-fired electric power plants and gasoline-fueled cars to wind turbines and electric vehicles could increase demand for two already-scarce metals — available almost exclusively in China — by 600-2,600 percent over the next 25 years, a new study has concluded. Published in the ACS journal Environmental Science & Technology, it points out that production of the two metals has been increasing by only a few percentage points per year.

Many of the communication tools of today rely on the function of light or, more specifically, on applying information to a light wave. Up until now, studies on electronic and optical devices with materials that are the foundations of modern electronics—such as radio, TV, and computers—have generally relied on nonlinear optical effects, producing devices whose bandwidth has been limited to the gigahertz (GHz) frequency region. (Hertz stands for cycles per second of a periodic phenomenon, in this case 1billion cycles).

EAST LANSING, Mich. — After 40 years of searching, physicists have the elusive Higgs boson in their sights. Wade Fisher, Michigan State University assistant professor of physics, presented the team's results today at a physics conference in La Thuile, Italy.

The ALPHA collaboration at CERN in Geneva has scored another coup on the antimatter front by performing the first-ever spectroscopic measurements of the internal state of the antihydrogen atom. Their results are reported in a forthcoming issue of Nature and are now online.

The oceans may be acidifying faster today than they did in the last 300 million years, according to scientists publishing a paper this week in the journal Science.

"What we're doing today really stands out in the geologic record," says lead author Bärbel Hönisch, a paleoceanographer at Columbia University's Lamont-Doherty Earth Observatory.

First it was caught. Then it was stored. And now it is being made to jump. "It" is the elusive antihydrogen atom.

Researchers at CERN, in an international effort led by a Canadian team, have used microwaves to manipulate antihydrogen atoms. In doing so, they've provided the world with its first glimpse of an "anti-atomic fingerprint." Their work is published today in the prestigious journal Nature, for the third time in a little more than a year.

An international team led by Canadian physicists from the University of British Columbia, SFU and TRIUMF have used microwaves to manipulate anti-hydrogen atoms. The findings, to be published Wednesday in the journal Nature, provide the world with its first glimpse of an "anti-atomic fingerprint."

COLUMBUS, Ohio – Using a new ultrafast camera, researchers have recorded the first real-time image of two atoms vibrating in a molecule.

Key to the experiment, which appears in this week's issue of the journal Nature, is the researchers' use of the energy of a molecule's own electron as a kind of "flash bulb" to illuminate the molecular motion.