Earth

Reducing tillage for some Central Great Plains crops could help conserve water and reduce losses caused by climate change, according to studies at the U.S. Department of Agriculture (USDA).

Research leader Laj Ahuja and others at the Agricultural Research Service (ARS) Agricultural Systems Research Unit at Fort Collins, Colo., superimposed climate projections onto 15 to 17 years of field data to see how future crop yields might be affected. ARS is USDA's chief intramural scientific research agency, and this work supports the USDA priority of responding to climate change.

Northwestern University scientists have connected 250 years of organic chemical knowledge into one giant computer network -- a chemical Google on steroids. This "immortal chemist" will never retire and take away its knowledge but instead will continue to learn, grow and share.

A decade in the making, the software optimizes syntheses of drug molecules and other important compounds, combines long (and expensive) syntheses of compounds into shorter and more economical routes and identifies suspicious chemical recipes that could lead to chemical weapons.

Knowing the position of missing oxygen atoms could be the key to cheaper solid oxide fuel cells with longer lifetimes. New microscopy research from the Department of Energy's Oak Ridge National Laboratory is enabling scientists to map these vacancies at an atomic scale.

Washington, D.C.—Carnegie scientists are the first to discover the conditions under which nickel oxide can turn into an electricity-conducting metal. Nickel oxide is one of the first compounds to be studied for its electronic properties, but until now scientists have not been able to induce a metallic state. The compound becomes metallic at enormous pressures of 2.4 million times the atmospheric pressure (240 gigapascals). The finding is published in Physical Review Letters.

Irvine, Calif. – Increased capture of natural gas from oil fields probably accounts for up to 70 percent of the dramatic leveling off seen in atmospheric methane at the end of the 20th century, according to new UC Irvine research being published Thursday, Aug. 23, in the journal Nature.

"We can now say with confidence that, based on our data, the trend is largely a result of changes in fossil fuel use," said chemistry professor Donald Blake, senior author on the paper.

(Edmonton) University of Alberta ecologist David Schindler has reviewed data from studies of controlling human-caused algae blooms in lakes and says controlling the input of the nutrient phosphorus is the key to fighting the problem.

Recent short-term algae studies claim that controlling the human input of both nitrogen and phosphorus into lakes must be reduced to control summer algae blooms.

TORONTO, ON – The radula sounds like something from a horror movie – a conveyor belt lined with hundreds of rows of interlocking teeth. In fact, radulas are found in the mouths of most molluscs, from the giant squid to the garden snail. Now, a "prototype" radula found in 500-million-year-old fossils studied by University of Toronto graduate student Martin Smith, shows that the earliest radula was not a flesh-rasping terror, but a tool for humbly scooping food from the muddy sea floor.

AMES, Iowa – Edward Yu took note of the facts – nearly 2 million deaths each year, 9 million infected each year, developments of multidrug-resistant, extensively drug-resistant and now totally drug-resistant strains – and decided to shift his research focus to tuberculosis.

Yu, an Iowa State University and Ames Laboratory researcher, has described in the journal Nature the three-part structure that allows E. coli bacteria to pump out toxins and resist antibiotics.

LONDON, ON – The impact of bipolar disorder during pregnancy has been hotly contended among the research community. Now, a new study from Lawson Health Research Institute and Western University is sorting out the debate and calling for more targeted, prospective research.

Bipolar disorder is characterized by depression, hypomania, or mania. It is most common among women, and its episodes are often concentrated during the height of the reproductive years.

The Dead Sea, a salt sea without an outlet, lies over 400 meters below sea level. Tourists like its high salt content because it increases their buoyancy. "For scientists, however, the Dead Sea is a popular archive that provides a diachronic view of its climate past," says Prof. Dr. Thomas Litt from the Steinmann-Institute for Geology, Mineralogy and Paleontology at the University of Bonn.

LIVERMORE, Calif. -- Many marine species will be harmed or won't survive if the levels of carbon dioxide continue to increase.

Current protection policies and management practices are unlikely to be enough to save them. Unconventional, non-passive methods to conserve marine ecosystems need to be considered if various marine species are to survive.

Sparse halos of neutrinos within the hearts of exploding stars exert a previously unrecognized influence on the physics of the explosion and may alter which elements can be forged by these violent events.

John Cherry, a graduate student at UC San Diego, models stellar explosions, including a type called a core-collapse supernova. As these stars run out of fuel, their cores suddenly collapse to form a neutron star, which quickly rebounds sending seas of neutrinos through the surrounding stellar envelope and out into space.

PHILADELPHIA, Aug. 21, 2012 — The American Chemical Society (ACS), the world's largest scientific society, is holding a special symposium today honoring Rudy M. Baum, editor-in-chief of its weekly newsmagazine, whose thought-provoking editorials and editorial leadership made Baum an icon among ACS' more than 164,000 members.

A computer model that can identify the best molecular candidates for removing carbon dioxide, molecular nitrogen and other greenhouse gases from power plant flues has been developed by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California (UC) Berkeley and the University of Minnesota. The model is the first computational method to provide accurate simulations of the interactions between flue gases and a special variety of the gas-capturing molecular systems known as metal-organic frameworks (MOFs).

Researchers at a recent worldwide conference on fusion power have confirmed the surprising accuracy of a new model for predicting the size of a key barrier to fusion that a top scientist at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has developed. The model could serve as a starting point for overcoming the barrier.