Earth

LIVERMORE, Calif. --Though there is enough power in the earth's winds to be a primary source of near-zero emission electric power for the world, large-scale high altitude wind power generation is unlikely to substantially affect climate.

That is the conclusion of a Lawrence Livermore National Laboratory climate scientist and collaborators who studied the geophysical limits to global wind power in a paper appearing in the Sept. 9 edition of the journal, Nature Climate Change.

Amsterdam, September 10, 2012 — Physics Letters B, Elsevier's flagship journal in high energy physics, announced today that the observations of the long-sought Higgs particle, hailed as one of the greatest scientific discoveries of all time, have been published. The papers: "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC" and "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC" are freely available online on ScienceDirect.

STONY BROOK, NY, Sept. 7, 2012– A just-published study provides a first-time analysis of the value of forage fish, which are small, schooling species such as sardines, herring, and anchovies. Three kinds of contributions of forage fish were estimated: as direct catch, as food for other commercially important fish, and as an important link in the food web in marine ecosystems.

A new survey suggests that the chamber of molten rock beneath Santorini's volcano expanded 10-20 million cubic meters, up to 15 times the size of London's Olympic Stadium, between January 2011 and April 2012.

The team calculate that the amount of molten rock that has arrived beneath Santorini in the past year is the equivalent of about 10-20 years growth of the volcano. But this does not mean that an eruption is about to happen: in fact the rate of earthquake activity has dropped off in the past few months.

Washington, D.C.— Over the past two decades, extensive forest death triggered by hot and dry climatic conditions has been documented on every continent except Antarctica. Forest mortality due to drought and heat stress is expected to increase due to climate change. Although research has focused on isolated incidents of forest mortality, little is known about the potential effects of widespread forest die-offs. A new analysis of the current literature on this topic by Carnegie's William and Leander Anderegg is published September 9 in Nature Climate Change.

Washington, D.C.— There is enough energy available in winds to meet all of the world's demand. Atmospheric turbines that convert steadier and faster high-altitude winds into energy could generate even more power than ground- and ocean-based units. New research from Carnegie's Ken Caldeira examines the limits of the amount of power that could be harvested from winds, as well as the effects high-altitude wind power could have on the climate as a whole. Their work is published September 9 by Nature Climate Change.

Can an abundance of sea otters help reverse a principal cause of global warming?

A new study by two UC Santa Cruz researchers suggest that a thriving sea otter population that keeps sea urchins in check will in turn allow kelp forests to prosper. The spreading kelp can absorb as much as 12 times the amount of CO2 from the atmosphere than if it were subject to ravenous sea urchins, the study finds.

COLLEGE STATION – Improperly applied fertilizer to newly placed sod may result in nutrient runoff into the water supply, but just when is the best time to apply fertilizer and what kind is the best for new turf?

J. Christopher Howk, Nicolas Lehner and Grant Mathews of the Center for Astrophysics at the University of Notre Dame published a paper this week in the journal Nature titled "Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud." The astrophysicists have explored a discrepancy between the amount of lithium predicted by the standard models of elemental production during the Big Bang and the amount of lithium observed in the gas of the Small Magellanic Cloud, a galaxy near to our own.

ARGONNE, ILL. (Sept. 6, 2012) -- Using ultrafast X-rays, scientists for the first time have watched how quickly electrons hop their way through rust nanoparticles.

This gives key insight to how iron oxide, one of the most abundant minerals in soil, behaves and alters the condition of soil and water around it. This also demonstrates the potential of time-resolved X-ray and optical methods to study chemical reactions at the subnanoscale in other semiconductors.

Today the drilling starts for a seismic monitoring network on the Marmara Sea near Istanbul. Specially designed seismic sensors in eight boreholes on the outskirts of Istanbul and around the eastern Marmara Sea will monitor the seismic activity of the region with high precision. In each of the respective 300 meter deep holes several borehole seismometers will be permanently installed at various depths.

BUFFALO, N.Y. -- Tiny sea creatures called rhabdopleurids reside on the ocean floor, building homes of collagen on the shells of dead clams. Rhabdopleurid colonies are small, and the critters are by no means the dominant animals in their ecosystem.

But they have lived this way -- and survived -- for more than 500 million years. And in doing so, they have outlasted more elaborate species that also descended from a common ancestor, according to a new study in the journal Lethaia.

Rust – iron oxide – is a poor conductor of electricity, which is why an electronic device with a rusted battery usually won't work. Despite this poor conductivity, an electron transferred to a particle of rust will use thermal energy to continually move or "hop" from one atom of iron to the next. Electron mobility in iron oxide can hold huge significance for a broad range of environment- and energy-related reactions, including reactions pertaining to uranium in groundwater and reactions pertaining to low-cost solar energy devices.

A neutron detector developed for studies focused on life science, drug discovery and materials technology has been licensed by PartTec Ltd. The Indiana-based manufacturer of radiation detection technologies is moving the technology developed at the U.S. Department of Energy's Oak Ridge National Laboratory toward the commercial marketplace.

The Neutron-Sensitive Anger Camera allows researchers to study a wider variety of crystalline structures, supporting studies in biology, earth science, geology, materials science and condensed matter physics.

Today, technicians in Minnesota will begin to position the first block of a detector that will be part of the largest, most advanced neutrino experiment in North America.

The NuMI Off-Axis Neutrino Appearance experiment – NOvA for short – will study the properties of neutrinos, such as their masses, and investigate whether they helped give matter an edge over antimatter after both were created in equal amounts in the big bang. The experiment is on track to begin taking data in 2013.