Earth

Take the time to enjoy a deep breath next weekend when the 405 freeway closes for Carmageddon II. If it's anything like last year, the air quality is about to get amazing.

In study findings announced Sept. 28, UCLA researchers report that they measured air pollutants during last year's Carmageddon (July 15) and found that when 10 miles of the 405 closed, air quality near the shuttered portion improved within minutes, reaching levels 83 percent better than on comparable weekends.

Boulder, Colorado, USA – The October GSA TODAY science article, "Open-source archive of active faults for northwest South America," by Gabriel Veloza and colleagues, is now online at www.geosociety.org/gsatoday/archive/22/10/. The article introduces the "Active Tectonics of the Andes Database," which will provide more data to more geoscientists.

The deserts of Utah and Nevada have not always been dry. Between 14,000 and 20,000 years ago, when large ice caps covered Canada during the last glacial cooling, valleys throughout the desert southwest filled with water to become large lakes, scientists have long surmised. At their maximum size, the desert lakes covered about a quarter of both Nevada and Utah. Now a team led by a Texas A&M University researcher has found a new water cycle connection between the U.S. southwest and the tropics, and understanding the processes that have brought precipitation to the western U.S.

Communication of discoveries has always been a hallmark of science, yet the challenges of making significant contributions to entomology did not stop many deaf and hard of hearing people as the field grew in the late 19th and early 20th centuries. Written by the Harry G. Lang (Professor Emeritus, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY), a deaf scholar, and by entomologist Jorge A.

MENLO PARK, Calif. — Large earthquakes can alter seismicity patterns across the globe in very different ways, according to two new studies by U.S. Geological Survey seismologists. Both studies shed light on more than a decade of debate on the origin and prevalence of remotely triggered earthquakes. Until now, distant but damaging "aftershocks" have not been included in hazard assessments, yet in each study, changes in seismicity were predictable enough to be included in future evaluations of earthquake hazards.

SALT LAKE CITY Sept. 26, 2012 – Seismologists have known for years that the Indo-Australian plate of Earth's crust is slowly breaking apart, but they saw it in action last April when at least four faults broke in a magnitude-8.7 earthquake that may be the largest of its type ever recorded.

SANTA CRUZ, CA--The massive earthquake that struck under the Indian Ocean southwest of Sumatra on April 11, 2012, came as a surprise to seismologists and left them scrambling to figure out exactly what had happened. Analysis of the seismic waves generated during the event has now revealed a complicated faulting process unlike anything seen before.

This year's largest earthquake, a magnitude 8.6 temblor on April 11 centered in the East Indian Ocean off Sumatra, did little damage, but it triggered quakes around the world for at least a week, according to a new analysis by seismologists from the University of California, Berkeley, and the U.S. Geological Survey (USGS).

The April 11 quake was unusually large – the tenth largest in the last 100 years and, similar to a few other recent large quakes, triggered small quakes during the three hours it took for seismic waves to travel through Earth's crust.

A warming climate and rising seas will enable salt marshes to more rapidly capture and remove carbon dioxide from the atmosphere, possibly playing a role in slowing the rate of climate change, according to a new study led by a University of Virginia environmental scientist and published in the Sept. 27 issue of the journal Nature.

High biodiversity acts as an insurance policy for nature and society alike as it increases the likelihood that at least some species will be sufficiently resilient to sustain important functions such as water purification and crop pollination in a changing environment.

"It's the same principle as an investment portfolio – you'd be mad to put all your eggs in one basket," says researcher Johan Eklöf.

The most unambiguous data to date on the elusive 113th atomic element has been obtained by researchers at the RIKEN Nishina Center for Accelerator-based Science (RNC). A chain of six consecutive alpha decays, produced in experiments at the RIKEN Radioisotope Beam Factory (RIBF), conclusively identifies the element through connections to well-known daughter nuclides. The groundbreaking result, reported in the Journal of Physical Society of Japan, sets the stage for Japan to claim naming rights for the element.

For the first time in decades, researchers have conducted an extensive exploration for deep-sea corals and sponges in submarine canyons off the northeastern coast of the US. The survey revealed coral "hotspots," and found that a new coral habitat suitability model could help predict where corals are likely to occur. The model is being developed by the Northeast Fisheries Science Center (NEFSC) and the National Ocean Service's Biogeography Branch.

Boulder, Colo., USA – The October issue of Lithosphere covers geology in Wyoming, USA; the California Coast Ranges, USA; the Alpine Fault, New Zealand; the South Atlantic seafloor; the central Himalaya in Nepal; and Sidekan, Kurdistan Region, Iraqi Zagros suture zone. Topics and methods include tectonics, orogeny, hazards, paleogeography, trigonometrics, multiple-point data analysis, LiDAR, oceanic isostasy, computer modeling, and spectroscopy.

WASHINGTON, Sept. 25, 2012 — A new episode in the American Chemical Society's (ACS') popular Prized Science video series features insights into the effects of wind-blown dust on human health and climate from Vicki Grassian, Ph.D. She has jokingly been called "the Dust Queen" and is a noted authority on the tiny particles of sand and dirt, termed mineral dust, that are transported from areas as remote as the Sahara Desert.

ITHACA, N.Y. — Using an advanced 3-D time-lapse imaging system, a group of physicists and plant biologists from Cornell University and the Boyce Thompson Institute for Plant Research have discovered how certain plant roots exhibit powerful mechanical abilities while navigating their environment.