Body

The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry.

Current methods used to sniff out dangerous airborne pathogens may wrongly suggest that there is no threat to health when, in reality, there may be.

But researchers have found a better method for collecting and analyzing these germs that could give a more accurate assessment of their actual threat. For example, the findings may make it easier to detect airborne pathogens in low concentrations.

Generating electricity from renewable sources will soon become as easy as putting a brush and a tube in a tub of wastewater.

A carbon fiber, bottle-brush anode developed by Penn State researchers will provide more than enough surface for bacteria to colonize, for the first time making it possible to use microbial fuel cells for large scale electricity production. In addition, a membrane-tube air cathode, adapted from existing wastewater treatment equipment, will complete the circuit.

UCLA scientists have designed and mass-produced billions of fluorescent microscale particles in the shapes of all 26 letters of the alphabet in an “alphabet soup” displaying “exquisite fidelity of the shapes.”

The letters are made of solid polymeric materials dispersed in a liquid solution. The research will be published March 29 in the Journal of Physical Chemistry C, where it will be illustrated on the cover. The scientists anticipate that their “LithoParticles” will have significant technological and scientific uses.

Researchers at the National Institutes of Health have developed an experimental vaccine that could, theoretically, eliminate malaria from entire geographic regions, by eradicating the malaria parasite from an area's mosquitoes.

The vaccine, so far tested only in mice, would prompt the immune system of a person who receives it to eliminate the parasite from the digestive tract of a malaria-carrying mosquito, after the mosquito has fed upon the blood of the vaccinated individual. The vaccine would not prevent or limit malarial disease in the person who received it.

USC College computational biologist Peter Calabrese has developed a new model to simulate the evolution of so-called recombination hotspots in the genome.

Published March 5 in the early online edition of the Proceedings of the National Academy of Sciences, the mathematical model and its associated software bring much-needed rigor to evolutionary investigations of how natural selection acts on individual genes, said Calabrese, a research assistant professor of biological sciences.

And, they may also aid the search for disease-associated genes within the human genome.

Some 40 years after the release of the classic science fiction movie Fantastic Voyage, researchers in the NanoRobotics Laboratory of École Polytechnique de Montréal’s Department of Computer Engineering and Institute of Biomedical Engineering have achieved a major technological breakthrough in the field of medical robotics. They have succeeded for the first time in guiding, in vivo and via computer control, a microdevice inside an artery, at a speed of 10 centimetres a second.

We take "self-assembly" for granted when it is carried out by the biopolymers which are our hair, teeth, or skin. But when scientists devise new ways for molecules to self assemble into new materials, it is an important achievement.

Nearly one in three women still experience painful sexual intercourse a year after their baby is born and more than half have at least one sex-related health problem, according to research in the March issue of Journal of Clinical Nursing.

482 women who had attended maternity units in Birmingham, UK, took part in a self-administered questionnaire at least a year after their most recent birth.

"87 per cent complained of at least one health problem" says Midwife Amanda Williams, who is currently on secondment to the city's Perinatal Institute.

A new study suggests how a notorious cancer gene may contribute to tumor growth.

The insight emerged from a long-running study of a protein called PMR1, the key player in an unusual mechanism that cells use to quickly stop production of certain important proteins.

Researchers discovered that PMR1 is activated – or “turned on – by another molecule, an energy-packing protein called Src (pronounced “sark”).