Tech

Data breaches are a recurring nightmare for IT managers responsible for securing not only their company’s confidential data, but possibly also sensitive information belonging to their clients, such as social security numbers or health or financial records. To help managers safeguard valuable information most efficiently, computer scientists at the National Institute of Standards and Technology (NIST) are applying security metrics to computer network pathways to assign a probable risk of attack to guide IT managers in securing their networks.

Troy, N.Y. – Since the idea of using DNA to create faster, smaller, and more powerful computers originated in 1994, scientists have been scrambling to develop successful ways to use genetic code for computation. Now, new research from a professor at Rensselaer Polytechnic Institute suggests that if we want to carry out artificial computations, all we have to do is literally look around.

Austin, TX July 22, 2008 — Hurricane Katrina helped University of Texas professor, Alexis Kwasinski, formulate a new plan for the U.S. telecom system: a de-centralized power architecture that would have kept the lights and phones on in New Orleans. Kwasinski maintains that a microgrid-based power plant with its own local power sources and independent control would be more dependable, efficient, and cost effective than traditional telecom power systems. Microgrids would also be a quick and inexpensive way to include renewable energy sources for both existing and developing systems.

The inventor of the nickel metal hydride (NiMH) technology used for building batteries for countless portable electronic gadgets and now hybrid gas-electric cars believes the hydrogen economy is already upon us.

In a paper published in the current issue of the International Journal of Nuclear Hydrogen Production and Applications, Stanford Ovshinsky, Chairman and CEO of Ovshinsky Innovation LLC, based in Bloomfield Hills, Michigan, explains that we already have the means for making the hydrogen economy realistic.

A novel super-resolution X-ray microscope developed by a team of researchers from the Paul Scherrer Institut (PSI) and EPFL in Switzerland combines the high penetration power of x-rays with high spatial resolution, making it possible for the first time to shed light on the detailed interior composition of semiconductor devices and cellular structures.

The first super-resolution images from this novel microscope will be published online July 18, 2008 in the journal Science.

WEST LAFAYETTE, Ind. - Researchers at Purdue University have overcome a major obstacle in reducing the cost of "solid state lighting," a technology that could cut electricity consumption by 10 percent if widely adopted.

The technology, called light-emitting diodes, or LEDs, is about four times more efficient than conventional incandescent lights and more environmentally friendly than compact fluorescent bulbs. The LEDs also are expected to be far longer lasting than conventional lighting, lasting perhaps as long as 15 years before burning out.

Several snowmobiles navigated speedily over arctic ice and snow in Alaska's outback in late June. This scene might seem ordinary except that the recently unveiled snowmobiles are unmanned, autonomous, toy-size robots called SnoMotes – the first prototype network of their kind envisioned to rove treacherous areas of the Arctic and Antarctic capturing more accurate measurements that will help scientists better understand what is causing the well-documented melting of ice in those regions.

ANN ARBOR, Mich.---The latest bright idea in energy-efficient lighting for homes and offices uses big science in nano-small packages to dim the future Edison's light bulb.

In the August issue of Nature Photonics, available online, scientists at the University of Michigan and Princeton University announce a discovery that pushes more appealing white light from organic light-emitting devices.

A greener, less expensive method to produce hydrogen for fuel may eventually be possible with the help of water, solar energy and nanotube diodes that use the entire spectrum of the sun's energy, according to Penn State researchers.

"Other researchers have developed ways to produce hydrogen with mind-boggling efficiency, but their approaches are very high cost," says Craig A. Grimes, professor of electrical engineering. "We are working toward something that is cost effective."

Revisiting a once-abandoned technique, engineers at the Massachusetts Institute of Technology (MIT) have successfully created a sophisticated, yet affordable, method to turn ordinary glass into a high-tech solar concentrator.

The technology, which uses dye-coated glass to collect and channel photons otherwise lost from a solar panel's surface, could eventually enable an office building to draw energy from its tinted windows as well as its roof.