Tech

A novel super-resolution X-ray microscope developed by a team of researchers from the Paul Scherrer Institut (PSI) and EPFL in Switzerland combines the high penetration power of x-rays with high spatial resolution, making it possible for the first time to shed light on the detailed interior composition of semiconductor devices and cellular structures.

The first super-resolution images from this novel microscope will be published online July 18, 2008 in the journal Science.

WEST LAFAYETTE, Ind. - Researchers at Purdue University have overcome a major obstacle in reducing the cost of "solid state lighting," a technology that could cut electricity consumption by 10 percent if widely adopted.

The technology, called light-emitting diodes, or LEDs, is about four times more efficient than conventional incandescent lights and more environmentally friendly than compact fluorescent bulbs. The LEDs also are expected to be far longer lasting than conventional lighting, lasting perhaps as long as 15 years before burning out.

Several snowmobiles navigated speedily over arctic ice and snow in Alaska's outback in late June. This scene might seem ordinary except that the recently unveiled snowmobiles are unmanned, autonomous, toy-size robots called SnoMotes – the first prototype network of their kind envisioned to rove treacherous areas of the Arctic and Antarctic capturing more accurate measurements that will help scientists better understand what is causing the well-documented melting of ice in those regions.

ANN ARBOR, Mich.---The latest bright idea in energy-efficient lighting for homes and offices uses big science in nano-small packages to dim the future Edison's light bulb.

In the August issue of Nature Photonics, available online, scientists at the University of Michigan and Princeton University announce a discovery that pushes more appealing white light from organic light-emitting devices.

A greener, less expensive method to produce hydrogen for fuel may eventually be possible with the help of water, solar energy and nanotube diodes that use the entire spectrum of the sun's energy, according to Penn State researchers.

"Other researchers have developed ways to produce hydrogen with mind-boggling efficiency, but their approaches are very high cost," says Craig A. Grimes, professor of electrical engineering. "We are working toward something that is cost effective."

Revisiting a once-abandoned technique, engineers at the Massachusetts Institute of Technology (MIT) have successfully created a sophisticated, yet affordable, method to turn ordinary glass into a high-tech solar concentrator.

The technology, which uses dye-coated glass to collect and channel photons otherwise lost from a solar panel's surface, could eventually enable an office building to draw energy from its tinted windows as well as its roof.

CAMBRDGE, Mass. -- Imagine windows that not only provide a clear view and illuminate rooms, but also use sunlight to efficiently help power the building they are part of. MIT engineers report a new approach to harnessing the sun's energy that could allow just that.

A breakthrough discovery at UC San Diego may help aid the semiconductor industry's quest to squeeze more information on chips to accelerate the performance of electronic devices. So far, the semiconductor industry has been successful in its consistent efforts to reduce feature size on a chip. Smaller features mean denser packing of transistors, which leads to more powerful computers, more memory, and hopefully lower costs.

In recent years cell phones and PDAs—"Personal Digital Assistants"—have exploded in power, performance and features. They now often boast expanded memory, cameras, Global Positioning System receivers and the ability to record and store multimedia files and transfer them over wireless networks—in addition to the cell phone system—using WiFi, infrared and Bluetooth communications. Oh, yes, and make phone calls.

How does a magnet that cannot transport electricity transform into a superconductor that is a perfect conductor of electricity?