Heavens

A Cosmic Eye has given scientists a unique insight into galaxy formation in the very early Universe.

Using gravity from a foreground galaxy as a zoom lens the team was able to see a young star-forming galaxy in the distant Universe as it appeared only two billion years after the Big Bang.

Scientists at the California Institute of Technology (Caltech), USA, and Durham University and Cardiff University, UK, are behind the research published today (Thursday, October 9) in the prestigious scientific journal Nature.

Telescopes on the ground and in space have teamed up to compose a colourful image that offers a fresh look at the history of the star-studded region NGC 346. This new, ethereal portrait, in which different wavelengths of light swirl together like watercolours, reveals new information about how stars form.

New Haven, Conn. — Astronomers studying new images of a nearby galaxy cluster have found evidence that high-speed collisions between large elliptical galaxies may prevent new stars from forming, according to a paper to be published in a November 2008 issue of The Astrophysical Journal Letters.

ANN ARBOR, Mich.---NASA's Cassini spacecraft is scheduled to fly within 16 miles of Saturn's moon Enceladus on Oct. 9 and measure molecules in its space environment that could give insight into the history of the solar system.

"This encounter will potentially have far-reaching implications for understanding how the solar system was formed and how it evolved," said professor Tamas Gombosi, chair of the University of Michigan Department of Atmospheric, Oceanic and Space Sciences.

GREENBELT, Md. -- The first NASA spacecraft to image and map the dynamic interactions taking place where the hot solar wind slams into the cold expanse of space is ready for launch Oct. 19. The two-year mission will begin from the Kwajalein Atoll, a part of the Marshall Islands in the Pacific Ocean.

Washington, D.C.—For several decades, scientists have thought that the Solar System formed as a result of a shock wave from an exploding star—a supernova—that triggered the collapse of a dense, dusty gas cloud that contracted to form the Sun and the planets. But detailed models of this formation process have only worked under the simplifying assumption that the temperatures during the violent events remained constant.

Berkeley -- A two-hour observation of Jupiter using an improved technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground, according to astronomers from the University of California, Berkeley, and the European Southern Observatory (ESO).

A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago.

The "birth rate" for stars is certainly not easy to determine. Distances in the universe are far too great for astronomers to be able to count all the newly formed celestial bodies with the aid of a telescope. So it is fortunate that the emerging stars give themselves away by a characteristic signal known as "H-alpha" emissions. The larger the number of stars being formed in a particular region of the firmament, the more H-alpha rays are emitted from that region.

Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise.

Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite.

The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia.