Genetically corrected blood cells obtained from skin cells from Fanconi anemia patients

A collaboration research carried out by the teams of Jordi Surrallés, Universitat Autònoma de Barcelona (UAB); Juan Carlos Izpisúa-Belmonte and Ángel Raya, Centre for Regenerative Medicine of Barcelona (CMRB); and Juan Antonio Bueren, Centre for Energetic, Environmental and Technological Research (CIEMAT), has resulted in the generation of blood cells from skin cells of patients with a genetic disease known as Fanconi anemia. The process is based on gene therapy and cell reprogramming techniques in which cells similar to embryonic stem cells known as induced pluripotent stem (iPS) cells can be generated. The research article was published in this week's digital version of Nature.

The research demonstrates that, for the first time, in the case of a genetic disease such as Fanconi anemia it is possible to correct the genetic defect in patient-specific skin cells by converting them into cells similar to embryonic stem cells (iPS cells) which later can be differentiated towards blood cells.

These results are the proof of concept that this new therapeutic strategy has the potential of generating tissues using the very skin of those affected with these genetic diseases. This observation is particularly important in diseases such as Fanconi anemia, where one of the main problems lies in the lack of blood cell in the bone marrow of those affected. However, according to researchers, this new therapeutic strategy can be applied to many other genetic diseases by differentiating iPS cells towards healthy tissues these patients lack.

The generation of blood cells in this research was carried out in vitro, in cell culture plates, which places the research in a preclinical environment. It remains unknown whether they would generate blood cells after being transplanted. Moreover, the transplant of embryonic stem cells in animals has revealed that these cells can cause tumours. Therefore, the possibility of treating Fanconi anemia patients by transplanting iPS cells must wait until the efficacy and safety of these new discoveries are demonstrated in experimental models.

Researchers taking part in the study are confident that in the next few years it will be possible to improve the efficacy and safety of this new scientific discovery, and that some time in the future, clinical professionals will be able to cure patients suffering from genetic diseases such as Fanconi anemia.

Source: Universitat Autonoma de Barcelona