Fermilab experiments constrain Higgs mass

"Fermilab's Tevatron collider typically produces about ten million collisions per second," said DZero co-spokesperson Darien Wood, of Northeastern University. "The Standard Model predicts how many times a year we should expect to see the Higgs boson in our detector, and how often we should see particle signals that can mimic a Higgs. By refining our analysis techniques and by collecting more and more data, the true Higgs signal, if it exists, will sooner or later emerge."

To increase their chances of finding the Higgs boson, the CDF and DZero scientists combine the results from their separate analyses, effectively doubling the data available.

"A particle collision at the Tevatron collider can produce a Higgs boson in many different ways, and the Higgs particle can then decay into various particles," said CDF co-spokesperson Rob Roser, of Fermilab. "Each experiment examines more and more possibilities. Combining all of them, we hope to see a first hint of the Higgs particle."

So far, CDF and DZero each have analyzed about three inverse femtobarns of collision data--the scientific unit that scientists use to count the number of collisions. Each experiment expects to receive a total of about 10 inverse femtobarns by the end of 2010, thanks to the superb performance of the Tevatron. The collider continues to set numerous performance records, increasing the number of proton-antiproton collisions it produces.

Source: DOE/Fermi National Accelerator Laboratory

Listen to CDF graduate student Barbara Alvarez-Gonzalez, University of Barcelona, as she explains in this 2-minute video the search for the Higgs particle with the CDF detector. Alvarez-Gonzalez is one of about 600 physicists from 63 institutions in 15 countries who work on the CDF experiment at Fermilab.

(Photo Credit: Fermilab)