Earth

Nutrients from the Amazon River's outflow spread well beyond the continental shelf and drive carbon cycling in the tropical ocean, say scientists who conducted a multi-year study. They will publish their results this week online in the journal Proceedings of the National Academy of Sciences (PNAS).

Nutrients from the Amazon River spread well beyond the continental shelf and drive carbon capture in the deep ocean, according to the authors of a multi-year study.

The finding does not change estimates of the oceans' total carbon uptake, but it reveals the surprisingly large role of tropical oceans and major rivers.

The tropical North Atlantic had been considered a net emitter of carbon from the respiration of ocean life. A 2007 study estimated that ocean's contribution to the atmosphere at 30 million tons of carbon annually.

The ecological value of coastal mangrove forests in Mexico has been apparent to marine scientists for years. Now, for the first time, researchers have used a wide-ranging compilation of fisheries landings, the official record of fish catches, to place an economic price tag on that value.

If you are living in the eastern United States, the environment around you is being harmed by air pollution. From Adirondack forests and Shenandoah streams to Appalachian wetlands and the Chesapeake Bay, a new report by the Cary Institute of Ecosystem Studies and The Nature Conservancy has found that air pollution is degrading every major ecosystem type in the northeastern and mid-Atlantic United States.

PASADENA, Calif.--Geoscientists at the California Institute of Technology have come up with a new explanation for the formation of monsoons, proposing an overhaul of a theory about the cause of the seasonal pattern of heavy winds and rainfall that essentially had held firm for more than 300 years.

Biogeoscientists show evidence of 90 billion tons of microbial organisms—expressed in terms of carbon mass—living in the deep biosphere, in a research article published online by Nature, July 20, 2008. This tonnage corresponds to about one-tenth of the amount of carbon stored globally in tropical rainforests.

Biogeoscientists show evidence of 90 billion tons of microbial organisms—expressed in terms of carbon mass—living in the deep biosphere, in a research article published online by Nature. This tonnage corresponds to about one-tenth of the amount of carbon stored globally in tropical rainforests.